Nonlocal Cross-Interaction Systems on Graphs: Nonquadratic Finslerian Structure and Nonlinear Mobilities

We study the evolution of a system of two species with nonlinear mobility and nonlocal interactions on a graph whose vertices are given by an arbitrary, positive measure. To this end, we extend a recently introduced 2-Wasserstein-type quasi-metric on generalized graphs, which is based on an upwind-interpolation, to the case of two-species systems, concave, nonlinear mobilities, and p ≠ 2. We provide a rigorous interpretation of the interaction system as a gradient flow in the Finslerian setting, arising from the new quasi-metric. 2010 Mathematics Subject Classification. 49J40 (Variational inequalities), 45G10 (Other nonlinear integral equations), 49J45 (Methods involving semicontinuity and convergence; relaxation), 28A33 (Spaces of measures, convergence of measures); 35B38 (Critical points of functionals in context of PDEs (e.g., energy functionals);

[1]  B. Sandstede,et al.  Modeling Stripe Formation on Growing Zebrafish Tailfins , 2019, Bulletin of Mathematical Biology.

[2]  A. Bertozzi,et al.  Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.

[3]  S. Chow,et al.  Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph , 2011, Archive for Rational Mechanics and Analysis.

[5]  A. Schlichting,et al.  The Scharfetter-Gummel scheme for aggregation-diffusion equations , 2020, IMA Journal of Numerical Analysis.

[6]  Long Chen FINITE VOLUME METHODS , 2011 .

[7]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[8]  M. Di Francesco,et al.  Many-particle limit for a system of interaction equations driven by Newtonian potentials , 2020, Calculus of Variations and Partial Differential Equations.

[9]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[10]  Mattia Zanella,et al.  Structure preserving schemes for Fokker-Planck equations with nonconstant diffusion matrices , 2021, Math. Comput. Simul..

[11]  Marco Di Francesco,et al.  A nonlocal swarm model for predators–prey interactions , 2016 .

[12]  Jingwei Hu,et al.  Fully Discrete Positivity-Preserving and Energy-Decaying Schemes for Aggregation-Diffusion Equations with a Gradient Flow Structure , 2018, 1811.11502.

[13]  François-Xavier Vialard,et al.  An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics , 2010, Foundations of Computational Mathematics.

[14]  Jos'e A. Carrillo,et al.  Convergence of a finite volume scheme for a system of interacting species with cross-diffusion , 2020, Numerische Mathematik.

[15]  Marco Di Francesco,et al.  Measure solutions for non-local interaction PDEs with two species , 2013 .

[16]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[17]  Björn Sandstede,et al.  Modelling stripe formation in zebrafish: an agent-based approach , 2015, Journal of The Royal Society Interface.

[18]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[19]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[20]  K. Painter,et al.  A continuum approach to modelling cell-cell adhesion. , 2006, Journal of theoretical biology.

[21]  A. Marigonda,et al.  On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals , 2009, 0909.2512.

[22]  Lorenzo Pareschi,et al.  Structure Preserving Schemes for Nonlinear Fokker–Planck Equations and Applications , 2017, Journal of Scientific Computing.

[23]  Helmut Neunzert,et al.  An introduction to the nonlinear Boltzmann-Vlasov equation , 1984 .

[24]  M. Burger,et al.  Segregation effects and gap formation in cross-diffusion models , 2020 .

[25]  Matthias Erbar Gradient flows of the entropy for jump processes , 2012, 1204.2190.

[26]  M. Burger,et al.  On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion , 2016, 1609.05024.

[27]  A. Esposito,et al.  Nonlinear degenerate cross-diffusion systems with nonlocal interaction , 2017, 1710.01653.

[28]  J. Carrillo,et al.  Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions , 2018, Discrete & Continuous Dynamical Systems - A.

[29]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[30]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[31]  Francis Filbet,et al.  A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..

[32]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[33]  J. Carrillo,et al.  The Filippov characteristic flow for the aggregation equation with mildly singular potentials , 2014, 1409.2811.

[34]  Markus Schmidtchen,et al.  Zoology of a Nonlocal Cross-Diffusion Model for Two Species , 2017, SIAM J. Appl. Math..

[35]  Giuseppe Savaré,et al.  A new class of transport distances between measures , 2008, 0803.1235.

[36]  Jos'e Antonio Carrillo,et al.  Nonlinear mobility continuity equations and generalized displacement convexity , 2009, 0901.3978.

[37]  J. Carrillo,et al.  Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D , 2013, 1310.4110.

[38]  F. Golse On the Dynamics of Large Particle Systems in the Mean Field Limit , 2013, 1301.5494.

[39]  J. Maas Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.

[40]  J. Carrillo,et al.  A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation. , 2019, Journal of theoretical biology.

[41]  Martial Agueh,et al.  Finsler structure in the p-Wasserstein space and gradient flows , 2012 .

[42]  B. Sandstede,et al.  Iridophores as a source of robustness in zebrafish stripes and variability in Danio patterns , 2018, Nature Communications.

[43]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[44]  J. Carrillo,et al.  A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure , 2014, 1402.4252.

[45]  C. Chou The Vlasov equations , 1965 .

[46]  J. Maas,et al.  Gradient flow structures for discrete porous medium equations , 2012, 1212.1129.

[47]  Kevin J Painter,et al.  Modelling the movement of interacting cell populations. , 2003, Journal of theoretical biology.

[48]  Jingwei Hu,et al.  Bound-Preserving Finite-Volume Schemes for Systems of Continuity Equations with Saturation , 2021, ArXiv.

[49]  J. Barr'e,et al.  Modelling pattern formation through differential repulsion , 2019, Networks Heterog. Media.