Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views

Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this problem. In this paper, we propose a method to estimate intrinsic images from multiple views of an outdoor scene without the need for precise geometry and with a few manual steps to calibrate the input. We use multiview stereo to automatically reconstruct a 3D point cloud of the scene. Although this point cloud is sparse and incomplete, we show that it provides the necessary information to compute plausible sky and indirect illumination at each 3D point. We then introduce an optimization method to estimate sun visibility over the point cloud. This algorithm compensates for the lack of accurate geometry and allows the extraction of precise shadows in the final image. We finally propagate the information computed over the sparse point cloud to every pixel in the photograph using image-guided propagation. Our propagation not only separates reflectance from illumination, but also decomposes the illumination into a sun, sky, and indirect layer. This rich decomposition allows novel image manipulations as demonstrated by our results.

[1]  Xuelong Li,et al.  Intrinsic images using optimization , 2011, CVPR 2011.

[2]  Dani Lischinski,et al.  Colorization using optimization , 2004, SIGGRAPH 2004.

[3]  Sylvain Paris,et al.  User-assisted intrinsic images , 2009, ACM Trans. Graph..

[4]  Paul E. Debevec,et al.  Digitizing the Parthenon: Estimating Surface Reflectance Properties of a Complex Scene under Captured Natural Illumination , 2004, VMV.

[5]  Paul Debevec,et al.  Inverse global illumination: Recovering re?ectance models of real scenes from photographs , 1998 .

[6]  Jan-Michael Frahm,et al.  Piecewise planar and non-planar stereo for urban scene reconstruction , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Mark S. Drew,et al.  Removing Shadows from Images , 2002, ECCV.

[8]  Yasuyuki Matsushita,et al.  Single-View Relighting with Normal Map Painting , 2006 .

[9]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[10]  Jean-Michel Morel,et al.  Scale Space Meshing of Raw Data Point Sets , 2011, Comput. Graph. Forum.

[11]  Paolo Cignoni,et al.  MeshLab: an Open-Source 3D Mesh Processing System , 2008, ERCIM News.

[12]  Stephen Lin,et al.  Intrinsic image decomposition with non-local texture cues , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[14]  Zeev Farbman,et al.  Interactive local adjustment of tonal values , 2006, SIGGRAPH 2006.

[15]  Frédo Durand,et al.  Light mixture estimation for spatially varying white balance , 2008, SIGGRAPH 2008.

[16]  Edward H. Adelson,et al.  Recovering intrinsic images from a single image , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Maneesh Agrawala,et al.  Illumination decomposition for material recoloring with consistent interreflections , 2011, SIGGRAPH 2011.

[18]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[19]  Harry Shum,et al.  Natural shadow matting , 2007, TOGS.

[20]  Wojciech Matusik,et al.  Progressively-Refined Reflectance Functions from Natural Illumination , 2004 .

[21]  M. Werman,et al.  Color lines: image specific color representation , 2004, CVPR 2004.

[22]  Michael Bosse,et al.  Unstructured lumigraph rendering , 2001, SIGGRAPH.

[23]  Cheng Lu,et al.  Intrinsic Images by Entropy Minimization , 2004, ECCV.

[24]  Richard Szeliski,et al.  Manhattan-world stereo , 2009, CVPR.

[25]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[27]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Mashhuda Glencross,et al.  Relightable Buildings from Images , 2011, Eurographics.

[29]  George Drettakis,et al.  Interactive Virtual Relighting of Real Scenes , 2000, IEEE Trans. Vis. Comput. Graph..

[30]  Chuohao Yeo,et al.  Intrinsic images decomposition using a local and global sparse representation of reflectance , 2011, CVPR 2011.

[31]  Richard Szeliski,et al.  Piecewise planar stereo for image-based rendering , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[32]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[33]  Wojciech Matusik,et al.  Factored time-lapse video , 2007, SIGGRAPH 2007.

[34]  Dani Lischinski,et al.  The Shadow Meets the Mask: Pyramid‐Based Shadow Removal , 2008, Comput. Graph. Forum.

[35]  Dani Lischinski,et al.  A Closed-Form Solution to Natural Image Matting , 2008 .

[36]  Jitendra Malik,et al.  Recovering photometric properties of architectural scenes from photographs , 1998, SIGGRAPH.

[37]  Jack Tumblin,et al.  Editing Soft Shadows in a Digital Photograph , 2007, IEEE Computer Graphics and Applications.

[38]  Yair Weiss,et al.  Deriving intrinsic images from image sequences , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[39]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[40]  David A. Forsyth,et al.  Rendering synthetic objects into legacy photographs , 2011, ACM Trans. Graph..