A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images

This paper proposes the Relit Spectral Angle-Stacked Autoencoder, a novel unsupervised feature learning approach for mapping pixel reflectances to illumination invariant encodings. This work extends the Spectral Angle-Stacked Autoencoder so that it can learn a shadow-invariant mapping. The method is inspired by a deep learning technique, Denoising Autoencoders, with the incorporation of a physics-based model for illumination such that the algorithm learns a shadow invariant mapping without the need for any labelled training data, additional sensors, a priori knowledge of the scene or the assumption of Planckian illumination. The method is evaluated using datasets captured from several different cameras, with experiments to demonstrate the illumination invariance of the features and how they can be used practically to improve the performance of high-level perception algorithms that operate on images acquired outdoors.

[1]  H. Bourlard,et al.  Auto-association by multilayer perceptrons and singular value decomposition , 1988, Biological Cybernetics.

[2]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .

[3]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[4]  Rishi Ramakrishnan,et al.  Shadow compensation for outdoor perception , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[6]  Emma Izquierdo-Verdiguier,et al.  Encoding Invariances in Remote Sensing Image Classification With SVM , 2013, IEEE Geoscience and Remote Sensing Letters.

[7]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[8]  Jiejie Zhu,et al.  Learning to recognize shadows in monochromatic natural images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Yoichi Sato,et al.  Illumination and reflectance spectra separation of a hyperspectral image meets low-rank matrix factorization , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[11]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[12]  Antonio M. López,et al.  Road Detection Based on Illuminant Invariance , 2011, IEEE Transactions on Intelligent Transportation Systems.

[13]  Nikolaos Doulamis,et al.  Deep supervised learning for hyperspectral data classification through convolutional neural networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[14]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[15]  Luca Maria Gambardella,et al.  Deep, Big, Simple Neural Nets for Handwritten Digit Recognition , 2010, Neural Computation.

[16]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[17]  Cheng Lu,et al.  On the removal of shadows from images , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Derek Hoiem,et al.  Single-image shadow detection and removal using paired regions , 2011, CVPR 2011.

[19]  James A. Gardner,et al.  Algorithm for de-shadowing spectral imagery , 2002, SPIE Optics + Photonics.

[20]  Andrew Zisserman,et al.  Deep Features for Text Spotting , 2014, ECCV.

[21]  Mark S. Drew,et al.  Multispectral image invariant to illumination colour, strength, and shading , 2011, Electronic Imaging.

[22]  J. Chanussot,et al.  Enhancing hyperspectral image quality using nonlinear PCA , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[23]  Sildomar T. Monteiro,et al.  Evaluating Classification Techniques for Mapping Vertical Geology Using Field-Based Hyperspectral Sensors , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[24]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[25]  Kinjiro Amano,et al.  Spatial distributions of local illumination color in natural scenes , 2016, Vision Research.

[26]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[27]  Kinjiro Amano,et al.  Time-lapse ratios of cone excitations in natural scenes , 2016, Vision Research.

[28]  Qing Zhang,et al.  Shadow Remover: Image Shadow Removal Based on Illumination Recovering Optimization , 2015, IEEE Transactions on Image Processing.

[29]  Peter I. Corke,et al.  Dealing with shadows: Capturing intrinsic scene appearance for image-based outdoor localisation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Gail P. Anderson,et al.  Shadow-insensitive material detection/classification with atmospherically corrected hyperspectral imagery , 2001, SPIE Defense + Commercial Sensing.

[31]  Alexei A. Efros,et al.  Detecting Ground Shadows in Outdoor Consumer Photographs , 2010, ECCV.

[32]  Yunsong Li,et al.  Hyperspectral image reconstruction by deep convolutional neural network for classification , 2017, Pattern Recognit..

[33]  Jitendra Malik,et al.  Learning Rich Features from RGB-D Images for Object Detection and Segmentation , 2014, ECCV.

[34]  Paul Newman,et al.  Lighting invariant urban street classification , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[35]  R. Richter,et al.  De‐shadowing of satellite/airborne imagery , 2005 .

[36]  Glenn Healey,et al.  Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions , 1999, IEEE Trans. Geosci. Remote. Sens..

[37]  T. Martin McGinnity,et al.  Chromaticity Space for Illuminant Invariant Recognition , 2012, IEEE Transactions on Image Processing.

[38]  C. Gueymard Parameterized transmittance model for direct beam and circumsolar spectral irradiance , 2001 .

[39]  Narendra Ahuja,et al.  Shadow Removal Using Bilateral Filtering , 2012, IEEE Transactions on Image Processing.

[40]  Jörgen Ahlberg,et al.  Illumination and shadow compensation of hyperspectral images using a digital surface model and non-linear least squares estimation , 2011, Remote Sensing.

[41]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Richard J. Murphy,et al.  Hyperspectral CNN Classification with Limited Training Samples , 2016, BMVC.

[43]  X. Briottet,et al.  Shadow detection in very high spatial resolution aerial images: A comparative study , 2013 .

[44]  Richard J. Murphy,et al.  Unsupervised feature learning for illumination robustness , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[45]  Paul Newman,et al.  Shady dealings: Robust, long-term visual localisation using illumination invariance , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[46]  Sildomar T. Monteiro,et al.  Mapping Layers of Clay in a Vertical Geological Surface Using Hyperspectral Imagery: Variability in Parameters of SWIR Absorption Features under Different Conditions of Illumination , 2014, Remote. Sens..

[47]  Yoshua Bengio,et al.  An empirical evaluation of deep architectures on problems with many factors of variation , 2007, ICML '07.

[48]  J. Boardman,et al.  Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm , 1992 .

[49]  Mark S. Drew,et al.  Removing Shadows from Images , 2002, ECCV.

[50]  Luca Maria Gambardella,et al.  Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition , 2010, ArXiv.

[51]  J. Marchant,et al.  Spectral invariance under daylight illumination changes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[52]  Cheng Lu,et al.  Intrinsic Images by Entropy Minimization , 2004, ECCV.

[53]  J. Marchant,et al.  Shadow-invariant classification for scenes illuminated by daylight. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[54]  Xiaoou Tang,et al.  Facial Landmark Detection by Deep Multi-task Learning , 2014, ECCV.

[55]  Claude Cariou,et al.  Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping , 2014 .