A framework of multiple kernel ensemble learning for classification using two-stage feature selection method

[1]  Farid Melgani,et al.  Support Vector Machine Active Learning Through Significance Space Construction , 2011, IEEE Geoscience and Remote Sensing Letters.

[2]  Licheng Jiao,et al.  Hyperspectral Band Selection Based on Trivariate Mutual Information and Clonal Selection , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Ethem Alpaydin,et al.  Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..

[4]  Controllability for neutral stochastic functional integrodifferential equations with infinite delay , 2016 .

[5]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[6]  Albert Rango,et al.  International Journal of Applied Earth Observation and Geoinformation a Comparison of Three Feature Selection Methods for Object-based Classification of Sub-decimeter Resolution Ultracam-l Imagery , 2022 .

[7]  P. Chavez,et al.  STATISTICAL METHOD FOR SELECTING LANDSAT MSS RATIOS , 1982 .

[8]  Helmi Zulhaidi Mohd Shafri,et al.  yperspectral discrimination of tree species with different classifications using ingle-and multiple-endmember , 2013 .

[9]  Steven C. H. Hoi,et al.  MKBoost: A Framework of Multiple Kernel Boosting , 2013, IEEE Trans. Knowl. Data Eng..

[10]  Jacek M. Zurada,et al.  Normalized Mutual Information Feature Selection , 2009, IEEE Transactions on Neural Networks.

[11]  Jon Atli Benediktsson,et al.  Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Tyng-Luh Liu,et al.  Efficient discriminative local learning for object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[13]  Tommy W. S. Chow,et al.  Heterogeneous feature subset selection using mutual information-based feature transformation , 2015, Neurocomputing.

[14]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Alexander J. Smola,et al.  Guest editorial: model selection and optimization in machine learning , 2011, Machine Learning.

[16]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[17]  Gustavo Camps-Valls,et al.  Urban Image Classification With Semisupervised Multiscale Cluster Kernels , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[18]  Jon Atli Benediktsson,et al.  Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis , 2011, IEEE Geoscience and Remote Sensing Letters.

[19]  Antonio J. Plaza,et al.  Subspace-Based Support Vector Machines for Hyperspectral Image Classification , 2015, IEEE Geoscience and Remote Sensing Letters.

[20]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[21]  Gustavo Camps-Valls,et al.  Learning Relevant Image Features With Multiple-Kernel Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Fang Liu,et al.  Imbalanced Hyperspectral Image Classification Based on Maximum Margin , 2015, IEEE Geoscience and Remote Sensing Letters.

[23]  Yung C. Shin,et al.  Sparse Multiple Kernel Learning for Signal Processing Applications , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[25]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[26]  William J. Emery,et al.  SVM Active Learning Approach for Image Classification Using Spatial Information , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Jon Atli Benediktsson,et al.  Extended Random Walker-Based Classification of Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Lorenzo Bruzzone,et al.  A Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Fang Liu,et al.  Selective multiple kernel learning for classification with ensemble strategy , 2013, Pattern Recognit..

[30]  Liangpei Zhang,et al.  Tensor Discriminative Locality Alignment for Hyperspectral Image Spectral–Spatial Feature Extraction , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Ye Zhang,et al.  Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Xiaolong Zhang,et al.  Improving Svm Learning Accuracy with Adaboost , 2008, 2008 Fourth International Conference on Natural Computation.

[33]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[34]  Jon Atli Benediktsson,et al.  Multiple Feature Learning for Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Jon Atli Benediktsson,et al.  Generalized Composite Kernel Framework for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Wei Gao,et al.  Ontology optimization tactics via distance calculating , 2016 .

[37]  Liangpei Zhang,et al.  Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation With a Locally Adaptive Dictionary , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[38]  André Stumpf,et al.  Active Learning in the Spatial Domain for Remote Sensing Image Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Yang Wang,et al.  Mutual information-based method for selecting informative feature sets , 2013, Pattern Recognit..

[40]  Jon Atli Benediktsson,et al.  Feature Extraction of Hyperspectral Images With Image Fusion and Recursive Filtering , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Fang Liu,et al.  Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images , 2016, Pattern Recognit..

[42]  Lorenzo Bruzzone,et al.  An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection , 1995, IEEE Trans. Geosci. Remote. Sens..

[43]  Jon Atli Benediktsson,et al.  Parsimonious Mahalanobis kernel for the classification of high dimensional data , 2012, Pattern Recognit..

[44]  Bor-Chen Kuo,et al.  Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[45]  S. Sanjeevi,et al.  Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[46]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Chong-Ho Choi,et al.  Input Feature Selection by Mutual Information Based on Parzen Window , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Koby Crammer,et al.  Kernel Design Using Boosting , 2002, NIPS.

[49]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[50]  Lei Wang,et al.  AdaBoost with SVM-based component classifiers , 2008, Eng. Appl. Artif. Intell..

[51]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[52]  Edoardo Pasolli,et al.  Ensemble Multiple Kernel Active Learning For Classification of Multisource Remote Sensing Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[53]  Taiji Suzuki,et al.  SpicyMKL: a fast algorithm for Multiple Kernel Learning with thousands of kernels , 2011, Machine Learning.