Realization of ultrahigh coherence in semiconductor lasers by negative electrical feedback

To be useful, an ultrahigh-coherence semiconductor laser source requires high frequency stability, narrow linewidth, the capability of frequency tracking to a master laser, and stable frequency tuning. Negative electrical feedback is proposed to meet these four requirements simultaneously. Although the degree of frequency fluctuation that can be reduced by negative electrical feedback is limited by the noise contained in the feedback signal, theoretical calculations show that the fluctuations can be lower than the quantum noise limit. Experimental results obtained recently by the author are reviewed. >

[1]  Motoichi Ohtsu,et al.  Linewidth reduction of a semiconductor laser by electrical feedback , 1985 .

[2]  M. Ohtsu,et al.  Derivation of the Spectral Width of a 0.8µm AlGaAs Laser Considering 1/f Noise , 1984 .

[3]  Roland E. Best Phase-Locked Loops , 1984 .

[4]  T. Hänsch,et al.  Two-photon optical Ramsey spectroscopy of freely falling atoms. , 1985, Optics letters.

[5]  Katsumi Emura,et al.  Novel optical FSK heterodyne single filter detection system using a directly modulated DFB-laser diode , 1984 .

[6]  Motoichi Ohtsu,et al.  Estimation of the Ultimate Frequency Stability of Semiconductor Lasers , 1983 .

[7]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[8]  Katsumi Emura,et al.  Realisation of flat FM response by directly modulating a phase tunable DFB laser diode , 1985 .

[9]  Olle Nilsson,et al.  Theory of a negative frequency feedback semiconductor laser , 1985 .

[10]  Motoichi Ohtsu,et al.  Frequency Stabilization of AlGaAs Semiconductor Laser Based on the 85Rb-D2 Line , 1982 .

[11]  F. Favre,et al.  Optical Feedback Effects Upon Laser Diode Oscillation Field Spectrum , 1982 .

[12]  D. Welford,et al.  Output power and temperature dependence of the linewidth of single‐ frequency cw (GaAl)As diode lasers , 1982 .

[13]  D. Welford,et al.  Observation of linewidth broadening in (GaAl)As diode lasers due to electron number fluctuations , 1982 .

[14]  A. Brillet,et al.  LASER FREQUENCY STABILIZATION BY SATURATED ABSORPTION , 1981 .

[15]  Motoichi Ohtsu,et al.  Spectral Measurements of NH3and H2O for Pollutant Gas Monitoring by 1.5 µm InGaAsP/InP Lasers , 1983 .

[16]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[17]  S. Kobayashi,et al.  Injection locking in AlGaAs semiconductor laser , 1981 .

[18]  T. Okoshi,et al.  Estimation of linewidth enhancement factor of AlGaAs lasers by correlation measurement between FM and AM noises , 1985 .

[19]  C. Bordé,et al.  Measurement of Methane Hyperfine Structure Using Laser Saturated Absorption , 1973 .

[20]  J. Kuhl,et al.  Coherence properties of gain- and index-guided semiconductor lasers , 1983 .

[21]  Hirokazu Hori,et al.  Frequency-Locking of a GaAlAs Laser to a Doppler-Free Spectrum of the Cs-D2Line , 1981 .

[22]  P. Kartaschoff,et al.  Frequency and time , 1978 .

[23]  A. W. Nelson,et al.  Monolithic 1.5 μm hybrid DFB/DBR lasers with 5 nm tuning range , 1984 .

[24]  J. V. Collins,et al.  Measurements of the semiconductor laser linewidth broadening factor , 1983 .

[25]  A. Mooradian,et al.  Spectral characteristics of external-cavity controlled semiconductor lasers , 1980 .

[26]  D. J. Glaze,et al.  The Performance and Capability of Cesium Beam Frequency Standards at the National Bureau of Standards , 1966 .

[27]  T. Okoshi Recent progress in heterodyne/coherent optical-fiber communications , 1984 .

[28]  K. Iga,et al.  Linewidth Measurement of a Single Longitudinal Mode AlGaAs Laser with a Fabry-Perot Interferometer , 1980 .

[29]  M. Ohtsu,et al.  Frequency offset locking of AlGaAs semiconductor lasers , 1987 .

[30]  Emission frequency stability in single-mode-fibre optical feedback controlled semiconductor lasers , 1983 .

[31]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[32]  H. Tsuchida,et al.  Frequency Stabilization of AlGaAs Semiconductor Laser to the Absorption Line of Water Vapor , 1982 .

[33]  H. Haug Quantum-Mechanical Rate Equations for Semiconductor Lasers , 1969 .

[34]  H J Shaw,et al.  All-single-mode fiber resonator. , 1982, Optics letters.

[35]  Ikuo Mito,et al.  Wide range wavelength tuning in 1.3 μm DBR-DC-PBH-LDs by current injection into the DBR region , 1985 .

[36]  R. Beehler,et al.  Cesium Beam Atomic Time and Frequency Standards , 1965 .

[37]  Kerry J. Vahala,et al.  Occupation fluctuation noise: A fundamental source of linewidth broadening in semiconductor lasers , 1983 .

[38]  Measurement of field spectra of 1.3 μm InGaAsP DFB lasers , 1985 .

[39]  Shigehisa Arai,et al.  Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in distributed Bragg reflector , 1983 .

[40]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[41]  K. Kikuchi,et al.  Novel method for high resolution measurement of laser output spectrum , 1980 .

[42]  T. Tako,et al.  Performances of a frequency offset locked He-Xe laser system at 3.51 µm , 1981, IEEE Journal of Quantum Electronics.

[43]  A new class of instabilities in a diode laser with an external cavity , 1984 .

[44]  M. Ohtsu,et al.  A Highly Stabilized Semiconductor Laser and Its Application to Optically Pumped Rb Atomic Clock , 1985, 39th Annual Symposium on Frequency Control.

[45]  H. Tsuchida,et al.  Relation Between Frequency and Intensity Stabilities in AlGaAs Semiconductor Laser , 1983 .