The metric theory of tensor products

Basics on tensor norms The role of $C(K)$-spaces and $L^1$-spaces $\otimes$-norms related to Hilbert space The fundamental theorem and its consequences Glossary of terms The problems of the Resume The Blaschke selection principle and compact convex sets in finite dimensional Banach spaces A short introduction to Banach lattices Stonean spaces and injectivity Epilogue Bibliography Author index Index of notation Index.

[1]  N. Tomczak-Jaegermann The moduli of smoothness and convexity and the Rademacher averages of the trace classes $S_{p}$ (1≤p<∞) , 1974 .

[2]  R. Schatten,et al.  Norm Ideals of Completely Continuous Operators , 1970 .

[3]  A. Szankowski Subspaces without the approximation property , 1978 .

[4]  Gilles Pisier Grothendieck's theorem for noncommutative C∗-algebras, with an Appendix on Grothendieck's constants , 1978 .

[5]  M. Zippin The separable extension problem , 1977 .

[6]  R. Rietz A proof of the Grothendieck inequality , 1974 .

[7]  C. Stegall,et al.  The Radon-Nikodym property in conjugate Banach spaces , 1975 .

[8]  Unconditionality in tensor products , 1978 .

[9]  A. Pietsch,et al.  Absolut p-summierende Abbildungen in normierten Räumen , 1967 .

[10]  Gilles Pisier,et al.  Introduction to Operator Space Theory , 2003 .

[11]  M. Rieffel The Radon-Nikodym theorem for the Bochner integral , 1968 .

[12]  Martin Mathieu COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) , 2004 .

[13]  Une nouvelle classe d'espaces de Banach vérifiant le théorème de Grothendieck , 1978 .

[14]  B(H) does not have the approximation propertydoes not have the approximation property , 1981 .

[15]  J. Wolfe Injective Banach spaces of continuous functions , 1978 .

[16]  Stanislaw J. Szarek,et al.  A Banach space without a basis which has the bounded approximation property , 1987 .

[17]  REAL AND COMPLEX OPERATOR IDEALS , 1994, math/9404207.

[18]  THE COMPLETE SEPARABLE EXTENSION PROPERTY , 1998, math/9804064.

[19]  Gilles Pisier,et al.  Grothendieck’s theorem for operator spaces , 2001, math/0108205.

[20]  P. Saphar Produits tensoriels d'espaces de Banach et classes d'applications linéaires , 1970 .

[21]  A superreflexive Banach space which does not admit complex structure , 1986 .

[22]  A simple proof of a theorem of Jean Bourgain , 1991, math/9201228.

[23]  M. Stone,et al.  Boundedness Properties in Function-Lattices , 1949, Canadian Journal of Mathematics.

[24]  A. Szankowski A banach lattice without the approximation property , 1976 .

[25]  Z. Ruan,et al.  Subspaces of C*-algebras , 1988 .

[26]  G. Pisier Factorization of Linear Operators and Geometry of Banach Spaces , 1986 .

[27]  Leopoldo Nachbin,et al.  A theorem of the Hahn-Banach type for linear transformations , 1950 .

[28]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[29]  Gilles Pisier Counterexamples to a conjecture of Grothendieck , 1983 .

[30]  G. Pisier,et al.  Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert , 1980 .

[31]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[32]  Gilles Pisier,et al.  Some results on Banach spaces without local unconditional structure , 1978 .

[33]  N. Varopoulos,et al.  On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory , 1974 .

[34]  P. Wojtaszczyk Banach Spaces For Analysts: Preface , 1991 .

[35]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .