On Statistical Optimality of Variational Bayes
暂无分享,去创建一个
[1] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[2] Zoubin Ghahramani,et al. Propagation Algorithms for Variational Bayesian Learning , 2000, NIPS.
[3] Naonori Ueda,et al. Bayesian model search for mixture models based on optimizing variational bounds , 2002, Neural Networks.
[4] Adrian Corduneanu,et al. Variational Bayesian Model Selection for Mixture Distributions , 2001 .
[5] Debdeep Pati,et al. Posterior contraction in sparse Bayesian factor models for massive covariance matrices , 2012, 1206.3627.
[6] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[7] L. Schwartz. On Bayes procedures , 1965 .
[8] Judith Rousseau,et al. Asymptotic behaviour of the empirical Bayes posteriors associated to maximum marginal likelihood estimator , 2015, 1504.04814.
[9] J. Ghosh,et al. Posterior consistency for semi-parametric regression problems , 2003 .
[10] X. Nguyen. Convergence of latent mixing measures in finite and infinite mixture models , 2011, 1109.3250.
[11] David B. Dunson,et al. Posterior consistency in conditional distribution estimation , 2013, J. Multivar. Anal..
[12] Pierre Alquier,et al. Concentration of tempered posteriors and of their variational approximations , 2017, The Annals of Statistics.
[13] Hagai Attias,et al. A Variational Bayesian Framework for Graphical Models , 1999 .
[14] L. Lecam. Convergence of Estimates Under Dimensionality Restrictions , 1973 .
[15] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[16] Pierre Alquier,et al. On the properties of variational approximations of Gibbs posteriors , 2015, J. Mach. Learn. Res..
[17] Alexander J. Smola,et al. Scalable inference in latent variable models , 2012, WSDM '12.
[18] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[19] David M. Blei,et al. Probabilistic topic models , 2012, Commun. ACM.
[20] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[21] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[22] D. Titterington,et al. Approximate Bayesian inference for simple mixtures , 2000 .
[23] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[24] A. V. D. Vaart,et al. Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities , 2001 .
[25] Chao Gao,et al. Rate-optimal posterior contraction for sparse PCA , 2013, 1312.0142.
[26] M. Stephens. Dealing with label switching in mixture models , 2000 .
[27] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[28] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[29] Guang Cheng,et al. Optimal Bayesian estimation in random covariate design with a rescaled Gaussian process prior , 2014, J. Mach. Learn. Res..
[30] Jiahua Chen. Optimal Rate of Convergence for Finite Mixture Models , 1995 .
[31] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[32] J. Rousseau. On the Frequentist Properties of Bayesian Nonparametric Methods , 2016 .
[33] Carlos S. Kubrusly,et al. Stochastic approximation algorithms and applications , 1973, CDC 1973.
[34] Lucien Birgé. Approximation dans les espaces métriques et théorie de l'estimation , 1983 .
[35] Alex Graves,et al. Practical Variational Inference for Neural Networks , 2011, NIPS.
[36] David B. Dunson,et al. Minimax Optimal Bayesian Aggregation , 2014 .
[37] Bo Wang,et al. Inadequacy of interval estimates corresponding to variational Bayesian approximations , 2005, AISTATS.
[38] Nhat Ho,et al. On strong identifiability and convergence rates of parameter estimation in finite mixtures , 2016 .