The asymptotic value of the zeroth-order Randić index and sum-connectivity index for trees

The zeroth-order Randic index and sum-connectivity index are two indices based on the vertex degrees. They appeared in the topological formula for the total π-electron energy of conjugated molecules and attracted a lot of attention in recent years. Let T n be the set of trees of order n. Suppose each tree in T n is equally likely. We get that for almost every tree, the zeroth-order Randic index is among (r1 ? e)n and the sum-connectivity index is among (r2 ? e)n, where r1, r2 are some constants and e is any positive real number.

[1]  Xueliang Li,et al.  The asymptotic value of Randic index for trees , 2010, Adv. Appl. Math..

[2]  Robert W. Robinson,et al.  The distribution of degrees in a large random tree , 1975, Discret. Math..

[3]  Hong Lin Extremal Wiener Index of Trees with Given Number of Vertices of Even Degree , 2014 .

[4]  Bo Zhou,et al.  Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number , 2010 .

[5]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[6]  Dragan Stevanović,et al.  Further Properties of the Second Zagreb Index , 2014 .

[7]  Yongtang Shi,et al.  On a Conjecture about Tricyclic Graphs with Maximal Energy , 2013, 1312.0204.

[8]  Yongtang Shi,et al.  (n, m)-Graphs with Maximum Zeroth-Order General Randic Index for α ∈ (−1, 0) ∗ , 2008 .

[9]  Michael Drmota,et al.  The Distribution of Patterns in Random Trees , 2008, Comb. Probab. Comput..

[10]  Bo Zhou,et al.  Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons , 2009 .

[11]  I. W Nowell,et al.  Molecular Connectivity in Structure-Activity Analysis , 1986 .

[12]  Michael Drmota,et al.  The distribution of nodes of given degree in random trees , 1999, J. Graph Theory.

[13]  Lemont B. Kier,et al.  The Meaning of Molecular Connectivity: A Bimolecular Accessibility Model* , 2002 .

[14]  Bo Zhou,et al.  On a novel connectivity index , 2009 .

[15]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[16]  Weijun Liu,et al.  Degree Distance of Unicyclic Graphs with Given Matching Number , 2013, Graphs Comb..

[17]  Ivan Gutman An Exceptional Property of First Zagreb Index , 2014 .

[18]  Saeid Alikhani,et al.  HARARY INDEX OF DENDRIMER NANOSTAR NS2[N] , 2014 .

[19]  Ali Iranmanesh,et al.  Harary Index of Some Nano-Structures , 2014 .

[20]  Yongtang Shi,et al.  The Maximal Matching Energy of Tricyclic Graphs , 2014, 1409.2038.

[21]  Hong Lin On Segments, Vertices of Degree Two and the First Zagreb Index of Trees , 2014 .

[22]  Ioan Tomescu,et al.  Maximum General Sum-Connectivity Index for Trees with Given Independence Number 1 , 2014 .

[23]  Xueliang Li,et al.  Randic index, Diameter and Average Distance 1 , 2009 .

[24]  Hosam Abdo,et al.  Estimating the spectral radius of a graph by the second Zagreb index , 2014 .

[25]  Indra Rajasingh,et al.  Computing Szeged Index of Certain Nanosheets Using Partition Technique , 2014 .

[26]  Ante Graovac,et al.  An Upper Bound for Energy of Matrices Associated to an Infinite Class of Fullerenes , 2014 .

[27]  Xueliang Li,et al.  On the diameter and inverse degree , 2011, Ars Comb..

[28]  Huiqing Liu,et al.  On the Randić Index , 2005 .

[30]  Yongtang Shi,et al.  Minimum General Randic Index on Chemical Trees with Given Order and Number of Pendent Vertices , 2008 .

[31]  Ratko Darda,et al.  Trees of Given Order and Independence Number with Minimal First Zagreb index , 2014 .

[32]  Riste Škrekovski,et al.  On Wiener Index of Common Neighborhood Graphs , 2014 .

[33]  Xueliang Li,et al.  Corrections of proofs for Hansen and Mélot's two theorems , 2007, Discret. Appl. Math..

[34]  Kexiang Xu,et al.  Maximizing the Zagreb indices of (n;m)-graphs 1 , 2014 .

[35]  Ali Reza Ashrafi,et al.  Balaban Index of Dendrimers , 2013 .

[36]  D. Bozkurt,et al.  On Incidence Energy , 2014 .

[37]  Xueliang Li,et al.  On a relation between the Randic index and the chromatic number , 2010, Discret. Math..

[38]  I. Gutman,et al.  Note on the HOMO-LUMO Index of Graphs ∗ , 2013 .

[39]  M. Randic Characterization of molecular branching , 1975 .

[40]  Xueliang Li,et al.  Connected (n, m)-graphs with minimum and maximum zeroth-order general Randic index , 2007, Discret. Appl. Math..

[41]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[42]  Yongtang Shi,et al.  ON MOLECULAR GRAPHS WITH SMALLEST AND GREATEST ZEROTH-ORDER GENERAL RANDIĆ INDEX∗ , 2022 .

[43]  Tat Chee Avenue,et al.  An Updated Survey on the Randic Index , 2008 .

[44]  Yongtang Shi,et al.  Extremal Matching Energy of Bicyclic Graphs , 2013 .