The topology of spaces of rational functions

where a, and b t are complex numbers, defines a continuous map of degree n from the Riemann sphere S2=CtJ co to itself. I f the coefficients (a 1 .. . . . an; bl . . . . . bn) va ry cont inuously in C 2" the m a p ] varies continuously providing the polynomials p and q have no root in common; but the topological degree of the map / jumps when a root of p moves into coincidence with a root of q. Let F* denote the open set of (~" consisting of pairs of monic polynomials (p, q) of degree n with no common root. F* is the complement of an algebraic hypersurface, the "resul tant locus", in (~2~. On the other hand it can be identified with a subspace of the space M~* of maps $ 2 ~ S 2 which take c~ to 1 and have degree n. I n this paper I shall prove tha t when n is large the 2n-dimensional complex var ie ty F* is a good approximat ion to the homotopy type of the space M*, or, more precisely

[1]  Albrecht Dold,et al.  QUASIFASERUNGEN UND UNENDLICHE SYMMETRISCHE PRODUKTE , 1958 .

[2]  Michael Atiyah,et al.  Topological aspects of Yang-Mills theory , 1978 .

[3]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .

[4]  M. Rosenlicht,et al.  Generalized Jacobian Varieties , 1954 .

[5]  F. Cohen,et al.  The Homology of Iterated Loop Spaces , 1976 .

[6]  J. Roitberg,et al.  ON THE ZEEMAN COMPARISON THEOREM FOR THE HOMOLOGY OF QUASI-NILPOTENT FIBRATIONS , 1976 .

[7]  D. Mcduff Configuration spaces of positive and negative particles , 1975 .

[8]  G. Segal,et al.  Homology fibrations and the “group-completion” theorem , 1976 .

[9]  Graeme Segal,et al.  Classifying spaces and spectral sequences , 1968 .

[10]  V. Arnold On some topological invariants of algebraic functions , 1970 .

[11]  R. Brockett Some geometric questions in the theory of linear systems , 1975 .

[12]  A. Dold Decomposition Theorems for S(n)-Complexes , 1962 .

[13]  Ioan Mackenzie James,et al.  On equivariant homotopy type , 1978 .

[14]  G. Segal Classifying spaces related to foliations , 1978 .

[15]  R. Stern,et al.  Some Geometric Questions in the Theory of Linear Systems , 2022 .

[16]  James Eells,et al.  Restrictions on harmonic maps of surfaces , 1976 .

[17]  Jean-Pierre Serre,et al.  Groupes algébriques et corps de classes , 1975 .

[18]  M. Nakaoka Cohomology of symmetric products , 1957 .

[19]  Graeme Segal,et al.  Configuration-spaces and iterated loop-spaces , 1973 .