Simulation of debris flows in the Central Andes based on Open Source GIS: possibilities, limitations, and parameter sensitivity

A GIS-based model framework, designed as a raster module for the Open Source software GRASS, was developed for simulating the mobilization and motion of debris flows triggered by rainfall. Designed for study areas up to few square kilometres, the tool combines deterministic and empirical model components for infiltration and surface runoff, detachment and sediment transport, slope stability, debris flow mobilization, and travel distance and deposition. The model framework was applied to selected study areas along the international road from Mendoza (Argentina) to Central Chile. The input parameters were investigated at the local scale. The model was run for a number of rainfall scenarios and evaluated using field observations and historical archives in combination with meteorological data. The sensitivity of the model to a set of key parameters was tested. The major scope of the paper is to highlight the capabilities of the model—and of this type of models in general—as well as its limitations and possible solutions.

[1]  K. T. Chau,et al.  Hazard assessment of debris flows for Leung King Estateof Hong Kong by incorporating GIS with numericalsimulations , 2004 .

[2]  R. Carsel,et al.  Developing joint probability distributions of soil water retention characteristics , 1988 .

[3]  H. Stefan,et al.  Groundwater Recharge from a Changing Landscape , 2007 .

[4]  Michael H. Young,et al.  Green‐Ampt infiltration model for sloping surfaces , 2006 .

[5]  Walter J. Rawls,et al.  Green‐ampt Infiltration Parameters from Soils Data , 1983 .

[6]  D. Mcclung,et al.  A Two–Parameter Model of Snow–Avalanche Motion , 1980, Journal of Glaciology.

[7]  Oldrich Hungr,et al.  A model for the runout analysis of rapid flow slides, debris flows, and avalanches , 1995 .

[8]  R. Bagnold An empirical correlation of bedload transport rates in flumes and natural rivers , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  V. Jetten,et al.  Suitability of transport equations in modelling soil erosion for a small Loess Plateau catchment , 2007 .

[10]  Philippe Coussot,et al.  Recognition, classification and mechanical description of debris flows , 1996 .

[11]  Armin Schoklitsch,et al.  Handbuch des Wasserbaues , 1962 .

[12]  Malcolm G. Anderson,et al.  An integrated hydrological model for rain‐induced landslide prediction , 2002 .

[13]  John Ewen,et al.  Validation of catchment models for predicting land-use and climate change impacts. 3. Blind validation for internal and outlet responses , 2004 .

[14]  Tetsuro Esaki,et al.  Geographical information system-based computational implementation and application of spatial three-dimensional slope stability analysis , 2006 .

[16]  I. Braud,et al.  Vegetation influence on runoff and sediment yield in the Andes region: observation and modelling , 2001 .

[17]  S. Moreiras,et al.  Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza Province, Argentina , 2005 .

[18]  S. Moreiras,et al.  Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina , 2005 .

[19]  Joseph F. Atkinson,et al.  A sediment transport equation for interrill overland flow on rough surfaces , 2001 .

[20]  John Ewen,et al.  Validation of catchment models for predicting land-use and climate change impacts. 1. Method , 1996 .

[21]  Dieter Rickenmann,et al.  Empirical Relationships for Debris Flows , 1999 .

[22]  Hajime Nakagawa,et al.  Routing Debris Flows with Particle Segregation , 1992 .

[23]  V. R. Schneider,et al.  GUIDE FOR SELECTING MANNING'S ROUGHNESS COEFFICIENTS FOR NATURAL CHANNELS AND FLOOD PLAINS , 1989 .

[24]  James C. Bathurst,et al.  Physically based modelling of shallow landslide sediment yield at a catchment scale , 1998 .

[25]  M. Selim Yalin,et al.  An Expression for Bed-Load Transportation , 1963 .

[26]  James C. Bathurst,et al.  Scenario modelling of basin-scale, shallow landslide sediment yield, Valsassina, Italian Southern Alps , 2005 .

[27]  H. Low Effect of Sediment Density on Bed‐Load Transport , 1989 .

[28]  Torsten Schaub,et al.  The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range , 2001 .

[29]  Tetsuro Esaki,et al.  Three-dimensional stability evaluation of landslides and a sliding process simulation using a new geographic information systems component , 2003 .

[30]  Stella M. Moreiras Landslide incidence zonation in the Rio Mendoza valley, Mendoza Province, Argentina , 2004 .

[31]  Gerard Govers,et al.  Empirical relationships for the transport capacity of overland flow. , 1989 .

[32]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[33]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[34]  T. W. Lambe,et al.  Predictions in soil engineering , 1973 .

[35]  W. Green,et al.  Studies on Soil Phyics. , 1911, The Journal of Agricultural Science.

[36]  M. Xie,et al.  A time-space based approach for mapping rainfall-induced shallow landslide hazard , 2004 .

[37]  David G. Tarboton,et al.  The SINMAP Approach to Terrain Stability Mapping , 1998 .

[38]  Volker Wichmann,et al.  Modellierung geomorphologischer Prozesse in einem alpinen Einzugsgebiet : Abgrenzung und Klassifizierung der Wirkungsräume von Sturzprozessen und Muren mit einem GIS , 2006 .

[39]  C. Yang Incipient Motion and Sediment Transport , 1973 .

[40]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[41]  Jordi Corominas,et al.  Integrated Landslide Susceptibility Analysis and Hazard Assessment in the Principality of Andorra , 2003 .

[42]  J. Poesen,et al.  Resistance of soils to concentrated flow erosion: A review , 2007 .

[43]  Dieter Rickenmann,et al.  Bedload transport capacity of slurry flows at steep slopes , 1990 .