Microgels and microcapsules in peptide and protein drug delivery.

[1]  K. Wagner,et al.  Properties of basic amino-acid residues. Nucleotide--poly(amino acid)interaction. , 1974, European journal of biochemistry.

[2]  Toyoichi Tanaka,et al.  Kinetics of swelling of gels , 1979 .

[3]  Allan S. Hoffman,et al.  Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics , 1987 .

[4]  Yoshihiro Ito,et al.  An insulin-releasing system that is responsive to glucose , 1989 .

[5]  C. Haynes,et al.  Globular proteins at solid/liquid interfaces , 1994 .

[6]  B. Vincent,et al.  Equilibrium and kinetic aspects of the pH-dependent swelling of poly(2-vinylpyridine-co-styrene) microgels , 1997 .

[7]  Needham,et al.  pH and Ion-Triggered Volume Response of Anionic Hydrogel Microspheres. , 1998, Macromolecules.

[8]  Wayne R. Gombotz,et al.  Protein release from alginate matrices. , 1998, Advanced drug delivery reviews.

[9]  Yoshihisa Suzuki,et al.  A new drug delivery system with controlled release of antibiotic only in the presence of infection. , 1998, Journal of biomedical materials research.

[10]  M. Malmsten,et al.  Formation of Adsorbed Protein Layers. , 1998, Journal of colloid and interface science.

[11]  Naoya Ogata,et al.  Adenosine-Induced Changes of the Phase Transition of Poly(6-(acryloyloxymethyl)uracil) Aqueous Solution , 1999 .

[12]  D. Needham,et al.  Investigation of the Swelling Response and Drug Loading of Ionic Microgels: The Dependence on Functional Group Composition , 1999 .

[13]  Y. Fukunishi,et al.  A novel microbial infection-responsive drug release system. , 1999, Journal of pharmaceutical sciences.

[14]  P. Kingshott,et al.  Surfaces that resist bioadhesion , 1999 .

[15]  T. Miyata,et al.  Preparation of an Antigen-Sensitive Hydrogel Using Antigen-Antibody Bindings , 1999 .

[16]  D. Needham,et al.  Investigation of the Swelling Response and Loading of Ionic Microgels with Drugs and Proteins: The Dependence on Cross-Link Density , 1999 .

[17]  Takashi Miyata,et al.  A reversibly antigen-responsive hydrogel , 1999, Nature.

[18]  Malmsten,et al.  Confocal Microscopy Studies of Trypsin Immobilization on Porous Glycidyl Methacrylate Beads. , 1999, Journal of colloid and interface science.

[19]  D Needham,et al.  Lipid-coated microgels for the triggered release of doxorubicin. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[20]  R. Pelton,et al.  Temperature-sensitive aqueous microgels. , 2000, Advances in colloid and interface science.

[21]  M. Meyerhoff,et al.  Polyelectrolyte-surfactant complexes: An aqueous titration method to model ion-pairing within polymeric membranes of polyion-sensitive electrodes , 2000 .

[22]  D Gan,et al.  Tunable swelling kinetics in core--shell hydrogel nanoparticles. , 2001, Journal of the American Chemical Society.

[23]  Fredrik Carlsson,et al.  Monte Carlo Simulations of Lysozyme Self-Association in Aqueous Solution , 2001 .

[24]  Kinam Park,et al.  Modulated insulin delivery from glucose-sensitive hydrogel dosage forms. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[25]  T. A. Hatton,et al.  Dually Responsive Microgels from Polyether-Modified Poly(acrylic acid): Swelling and Drug Loading , 2002 .

[26]  Kazunori Kataoka,et al.  Block copolymer micelles for delivery of gene and related compounds. , 2002, Advanced drug delivery reviews.

[27]  Robert Langer,et al.  Moving smaller in drug discovery and delivery , 2002, Nature Reviews Drug Discovery.

[28]  H. Möhwald,et al.  Influence of the Ionic Strength on the Polyelectrolyte Multilayers' Permeability , 2003 .

[29]  Jayanth Panyam,et al.  Biodegradable nanoparticles for drug and gene delivery to cells and tissue. , 2003, Advanced drug delivery reviews.

[30]  Kyle N. Plunkett,et al.  Swelling Kinetics of Disulfide Cross-Linked Microgels , 2003 .

[31]  Jean M. J. Fréchet,et al.  A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  F. Caruso,et al.  Facile tailoring of film morphology and release properties using layer-by-layer assembly of thermoresponsive materials. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[33]  Benno Radt,et al.  Optically Addressable Nanostructured Capsules , 2004 .

[34]  Xiaodong Fan,et al.  A cyclodextrin microgel for controlled release driven by inclusion effects , 2004 .

[35]  Jean Chmielewski,et al.  Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. , 2004, Journal of the American Chemical Society.

[36]  Jeffrey S. Moore,et al.  Multitechnique characterization of fatty acid-modified microgels. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[37]  S. Armes,et al.  Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[38]  Takashi Miyata,et al.  Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose , 2004, Journal of biomaterials science. Polymer edition.

[39]  Fredrik Carlsson,et al.  Lysozyme adsorption to charged surfaces : A Monte Carlo Study , 2004 .

[40]  B. Saunders On the structure of poly(N-isopropylacrylamide) microgel particles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[41]  M. Serpe,et al.  Pulsatile release of insulin from layer-by-layer assembled microgel thin films , 2005 .

[42]  Daniel E. Otzen,et al.  Protein drug stability: a formulation challenge , 2005, Nature Reviews Drug Discovery.

[43]  Hiroyuki Inoue,et al.  Sugar-induced disintegration of layer-by-layer assemblies composed of concanavalin A and glycogen. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[44]  Wolfgang Lindner,et al.  Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. , 2005, Chemical reviews.

[45]  T. A. Hatton,et al.  Kinetics of swelling of polyether-modified poly(acrylic acid) microgels with permanent and degradable cross-links. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[46]  Helmuth Möhwald,et al.  Multilayer microcapsules as anti-cancer drug delivery vehicle: deposition, Sustained release, and in vitro bioactivity. , 2005, Macromolecular bioscience.

[47]  Benno Radt,et al.  Light-responsive polyelectrolyte/gold nanoparticle microcapsules. , 2005, The journal of physical chemistry. B.

[48]  Justin D. Debord,et al.  Phase transition behavior, protein adsorption, and cell adhesion resistance of poly(ethylene glycol) cross-linked microgel particles. , 2005, Biomacromolecules.

[49]  Ying Zhang,et al.  A novel microgel and associated post-fabrication encapsulation technique of proteins. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[50]  Dieter Braun,et al.  The role of metal nanoparticles in remote release of encapsulated materials. , 2005, Nano letters.

[51]  G. Sukhorukov,et al.  Defined Picogram Dose Inclusion and Release of Macromolecules using Polyelectrolyte Microcapsules , 2005 .

[52]  H. Bysell,et al.  Visualizing the interaction between poly-L-lysine and poly(acrylic acid) microgels using microscopy techniques: effect of electrostatics and peptide size. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[53]  Martin Malmsten,et al.  Soft drug delivery systems. , 2006, Soft matter.

[54]  F. Caruso,et al.  Degradable polyelectrolyte capsules filled with oligonucleotide sequences. , 2006, Angewandte Chemie.

[55]  S. Armes,et al.  Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[56]  E. Kumacheva,et al.  MICROGELS: Old Materials with New Applications , 2006 .

[57]  A. Jonas,et al.  Glucose-responsive polyelectrolyte capsules. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[58]  E. Kumacheva,et al.  Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. , 2006, Biomacromolecules.

[59]  Helmuth Möhwald,et al.  Stable weak polyelectrolyte microcapsules with pH-responsive permeability , 2006 .

[60]  E. Kumacheva,et al.  Biofunctionalized pH‐Responsive Microgels for Cancer Cell Targeting: Rational Design , 2006 .

[61]  L. Lyon,et al.  1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels. , 2006, Biomacromolecules.

[62]  M. Steup,et al.  Red blood cell templated polyelectrolyte capsules: A novel vehicle for the stable encapsulation of DNA and proteins , 2006 .

[63]  T. Aminabhavi,et al.  pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of ibuprofen , 2006 .

[64]  Andrea M. Santos,et al.  Adsorption of human IgG on to poly(N-isopropylacrylamide)-based polymer particles , 2006, Biotechnology Letters.

[65]  Q. Qian,et al.  Temperature-pH sensitivity of bovine serum albumin protein-microgels based on cross-linked poly(N-isopropylacrylamide-co-acrylic acid). , 2006, Colloids and Surfaces B: Biointerfaces.

[66]  K. Tam,et al.  Application of drug selective electrode in the drug release study of pH-responsive microgels. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[67]  H. Möhwald,et al.  Controlled Release of DNA from Self‐Degrading Microcapsules , 2007 .

[68]  W. J. King,et al.  Dynamic Materials Based on a Protein Conformational Change , 2007 .

[69]  Tae Gwan Park,et al.  Shell cross-linked hyaluronic acid/polylysine layer-by-layer polyelectrolyte microcapsules prepared by removal of reducible hyaluronic acid microgel cores. , 2007, Biomacromolecules.

[70]  Zhibing Hu,et al.  Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. , 2007, Angewandte Chemie.

[71]  Joseph M. DeSimone,et al.  Nanoparticle Drug Delivery Platform , 2007 .

[72]  A. Sharma,et al.  Photoregulation of drug release in azo-dextran nanogels. , 2007, International journal of pharmaceutics.

[73]  V. Bulmus,et al.  Synthesis and characterization of degradable p(HEMA) microgels: use of acid-labile crosslinkers. , 2007, Macromolecular bioscience.

[74]  R. K. Shah,et al.  Monodisperse Thermoresponsive Microgels with Tunable Volume‐Phase Transition Kinetics , 2007 .

[75]  Gleb B. Sukhorukov,et al.  Self‐Rupturing and Hollow Microcapsules Prepared from Bio‐polyelectrolyte‐Coated Microgels , 2007 .

[76]  K. Matyjaszewski,et al.  Synthesis and Biodegradation of Nanogels as Delivery Carriers for Carbohydrate Drugs , 2007 .

[77]  P. Hansson,et al.  Interaction between lysozyme and poly(acrylic acid) microgels. , 2007, Journal of colloid and interface science.

[78]  Changren Zhou,et al.  Polysaccharides-based nanoparticles as drug delivery systems. , 2008, Advanced drug delivery reviews.

[79]  D. Trau,et al.  Influence of Different Polyelectrolytes on Layer-by-Layer Microcapsule Properties: Encapsulation Efficiency and Colloidal and Temperature Stability , 2008 .

[80]  M. Francis,et al.  Metallothionein-cross-linked hydrogels for the selective removal of heavy metals from water. , 2008, Journal of the American Chemical Society.

[81]  Fan Yang,et al.  Construction of hollow DNA/PLL microcapsule as a dual carrier for controlled delivery of DNA and drug , 2008 .

[82]  Robert Pelton,et al.  Impact of microgel morphology on functionalized microgel-drug interactions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[83]  R. K. Shah,et al.  Fabrication of Monodisperse Thermosensitive Microgels and Gel Capsules in Microfluidic Devices Highlight Www.rsc.org/softmatter | Soft Matter , 2022 .

[84]  A. Gaharwar,et al.  Dual-stimuli responsive PNiPAM microgel achieved via layer-by-layer assembly: magnetic and thermoresponsive. , 2008, Journal of colloid and interface science.

[85]  Xianfu Lin,et al.  Hepatic-targeting microcapsules construction by self-assembly of bioactive galactose-branched polyelectrolyte for controlled drug release system. , 2008, Journal of colloid and interface science.

[86]  Smart hydrogels containing adenylate kinase: translating substrate recognition into macroscopic motion. , 2008, Journal of the American Chemical Society.

[87]  H. Bysell,et al.  Transport of poly-L-lysine into oppositely charged poly(acrylic acid) microgels and its effect on gel deswelling. , 2008, Journal of colloid and interface science.

[88]  Andrés J. García,et al.  Reduced acute inflammatory responses to microgel conformal coatings. , 2008, Biomaterials.

[89]  Yue Cui,et al.  Triggered release of insulin from glucose-sensitive enzyme multilayer shells. , 2009, Biomaterials.

[90]  A. Shelton,et al.  Changes in neuronal activation patterns in response to androgen deprivation therapy: a pilot study , 2010, BMC Cancer.

[91]  A. Schmidtchen,et al.  Binding and release of consensus peptides by poly(acrylic acid) microgels. , 2009, Biomacromolecules.

[92]  Y. Nagasaki,et al.  Enhanced cytoplasmic delivery of siRNA using a stabilized polyion complex based on PEGylated nanogels with a cross-linked polyamine structure. , 2009, Biomacromolecules.

[93]  A. Kabanov,et al.  Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. , 2009, Angewandte Chemie.

[94]  A. Schmidtchen,et al.  Oligotryptophan-tagged antimicrobial peptides and the role of the cationic sequence. , 2009, Biochimica et biophysica acta.

[95]  R. de Vries,et al.  Salt-induced disintegration of lysozyme-containing polyelectrolyte complex micelles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[96]  W. Hennink,et al.  Polyelectrolyte microcapsules for biomedical applications , 2009 .

[97]  M. Ballauff,et al.  Enhanced activity of enzymes immobilized in thermoresponsive core-shell microgels. , 2009, The journal of physical chemistry. B.

[98]  P. Hansson,et al.  Mechanism of lysozyme uptake in poly(acrylic acid) microgels. , 2009, The journal of physical chemistry. B.

[99]  R. de Vries,et al.  Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients. , 2009, Biomacromolecules.

[100]  Yajun Wang,et al.  Triggered enzymatic degradation of DNA within selectively permeable polymer capsule microreactors. , 2009, Angewandte Chemie.

[101]  W. H. Blackburn,et al.  Peptide-functionalized nanogels for targeted siRNA delivery. , 2009, Bioconjugate chemistry.

[102]  Roosmarijn E. Vandenbroucke,et al.  Biodegradable Dextran Nanogels for RNA Interference: Focusing on Endosomal Escape and Intracellular siRNA Delivery , 2009 .

[103]  H. Bysell,et al.  Interactions between homopolypeptides and lightly cross-linked microgels. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[104]  T. Kissel,et al.  Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by Fluorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[105]  F. Caruso,et al.  Low-fouling poly(N-vinyl pyrrolidone) capsules with engineered degradable properties. , 2009, Biomacromolecules.

[106]  Zhiyong Meng,et al.  Thermoresponsive microgel-based materials. , 2009, Chemical Society reviews.

[107]  Xiurong Yang,et al.  A facile pathway to prepare enzymatically degradable microcapsules with tunable capsule shell properties , 2009 .

[108]  Joel A. Cohen,et al.  Acetal‐Modified Dextran Microparticles with Controlled Degradation Kinetics and Surface Functionality for Gene Delivery in Phagocytic and Non‐Phagocytic Cells , 2010, Advanced materials.

[109]  B. Sproat,et al.  PEGylation of biodegradable dextran nanogels for siRNA delivery. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[110]  G. Sukhorukov,et al.  Mechanism of protein release from polyelectrolyte multilayer microcapsules. , 2010, Biomacromolecules.

[111]  Andrés J. García,et al.  Chronic inflammatory responses to microgel-based implant coatings. , 2010, Journal of biomedical materials research. Part A.

[112]  L. Andrew Lyon,et al.  Design of Multiresponsive Hydrogel Particles and Assemblies , 2010 .

[113]  P. Hansson,et al.  Distribution of cytochrome c in polyacrylate microgels , 2010 .

[114]  H. Bysell,et al.  Effect of charge density on the interaction between cationic peptides and oppositely charged microgels. , 2010, The journal of physical chemistry. B.

[115]  Supriya Shidhaye,et al.  Advances in polymeric micelles for drug delivery and tumor targeting. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[116]  P. Hansson,et al.  Interaction between lysozyme and colloidal poly(NIPAM-co-acrylic acid) microgels. , 2010, Journal of colloid and interface science.

[117]  H. Bysell,et al.  Biomacromolecules in microgels — Opportunities and challenges for drug delivery , 2010 .

[118]  W. Norde,et al.  Effects of polyelectrolyte complex micelles and their components on the enzymatic activity of lipase. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[119]  Heather E Canavan,et al.  Biological cell detachment from poly(N-isopropyl acrylamide) and its applications. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[120]  A. Høgset,et al.  Prolonged gene silencing by combining siRNA nanogels and photochemical internalization. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[121]  M. C. Stuart,et al.  Lysozyme uptake by oxidized starch polymer microgels. , 2010, Biomacromolecules.

[122]  Jean Paul Remon,et al.  Polymeric multilayer capsules in drug delivery. , 2010, Angewandte Chemie.

[123]  A. Schmidtchen,et al.  Effect of hydrophobicity on the interaction between antimicrobial peptides and poly(acrylic acid) microgels. , 2010, The journal of physical chemistry. B.

[124]  Effects of peptide secondary structure on the interaction with oppositely charged microgels. , 2011, Biomacromolecules.

[125]  William L Murphy,et al.  Emerging area: biomaterials that mimic and exploit protein motion. , 2011, Soft matter.

[126]  H. Bysell,et al.  Effects of peptide cyclization on the interaction with oppositely charged microgels , 2011 .

[127]  Kyle E Broaders,et al.  Acid-degradable solid-walled microcapsules for pH-responsive burst-release drug delivery. , 2011, Chemical communications.