The properties of fast and slow oblique solitons in a magnetized plasma

This work builds on a recent treatment by McKenzie and Doyle [Phys. Plasmas8, 4367 (2001)], on oblique solitons in a cold magnetized plasma, to include the effects of plasma thermal pressure. Conservation of total momentum in the direction of wave propagation immediately shows that if the flow is supersonic, compressive (rarefactive) changes in the magnetic pressure induce decelerations (accelerations) in the flow speed, whereas if the flow is subsonic, compressive (rarefactive) changes in the magnetic pressure induce accelerations (decelerations) in the flow speed. Such behavior is characteristic of a Bernoulli-typeplasma momentum flux which exhibits a minimum at the plasma sonic point. The plasma energy flux (kinetic plus enthalpy) also shows similar Bernoulli-type behavior. This transonic effect is manifest in the spatial structure equation for the flow speed (in the direction of propagation) which shows that soliton structures may exist if the wave speed lies either (i) in the range between the fast and Alfven speeds or (ii) between the sound and slow mode speed. These conditions follow from the requirement that a defined, characteristic “soliton parameter” m exceeds unity. It is in this latter slow soliton regime that the effects of plasma pressure are most keenly felt. The equilibrium points of the structure equation define the center of the wave. The structure of both fast and slow solitons is elucidated through the properties of the energy integral function of the structure equation. In particular, the slow soliton, which owes its existence to plasma pressure, may have either a compressive or rarefactive nature, and exhibits a rich structure, which is revealed through the spatial structure of the longitudinal speed and its corresponding transverse velocity hodograph.