Comparison between Hartree-Fock and Kohn-Sham electronic and structural properties for hexagonal-close-packed magnesium

The properties of hcp magnesium are investigated using the density functional method with the linear combination of atomic orbitals as implemented in the CRYSTAL95 code. The lattice equilibrium parameters and the binding energy have been calculated at the Hartree-Fock level, at the hybrid Hartree-Fock density functional level, and at the Kohn-Sham density functional level using local and non-local exchange and correlation potentials. The electronic properties (band structures, topologies of the Fermi surface, and densities of states) and the elastic constants are computed for each type of functional, and compared to experimental data.

[1]  Cesare Pisani,et al.  Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials , 1996 .

[2]  F. Marinelli,et al.  Lattice dynamics of magnesium using pseudopotential and ab initio Hartree-Fock approaches. , 1996, Physical review. B, Condensed matter.

[3]  M. Causà,et al.  Density functional LCAO calculations for solids: Comparison among Hartree–Fock, DFT local density approximation, and DFT generalized gradient approximation structural properties , 1995 .

[4]  M. Causà,et al.  Density functional LCAO calculation of periodic systems. A posteriori correction of the Hartree-Fock energy of covalent and ionic crystals , 1994 .

[5]  M. Causà,et al.  Density-functional LCAO calculations for solids: Comparison between Hartree-Fock and Kohn-Sham structural properties , 1994 .

[6]  P. B. Allen,et al.  Phase diagram and thermodynamic properties of solid magnesium in the quasiharmonic approximation. , 1993, Physical review. B, Condensed matter.

[7]  Nicholas C. Handy,et al.  Kohn—Sham bond lengths and frequencies calculated with accurate quadrature and large basis sets , 1992 .

[8]  Michael J. Frisch,et al.  The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets , 1992 .

[9]  Axel D. Becke,et al.  Density-functional thermochemistry. I. The effect of the exchange-only gradient correction , 1992 .

[10]  Roetti,et al.  Quantum-mechanical Hartree-Fock self-consistent-field study of the elastic constants and chemical bonding of MgF2 (sellaite). , 1991, Physical review. B, Condensed matter.

[11]  M. Catti,et al.  Elastic constants and electronic structure of fluorite (CaF2): an ab initio Hartree-Fock study , 1991 .

[12]  T. Jarlborg,et al.  Electronic structure of Mg, Zn and Cd , 1989 .

[13]  Schwarz,et al.  Electronic structure of hcp metals. , 1988, Physical review. B, Condensed matter.

[14]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[15]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[16]  S. Hüfner Bandwidth of free electron metals as measured by photoelectron spectroscopy , 1986 .

[17]  M. Chou,et al.  Ab initio study of the structural properties of magnesium , 1986 .

[18]  R. Dovesi,et al.  Electronic structure and stability of different crystal phases of magnesium oxide. , 1986, Physical review. B, Condensed matter.

[19]  Marvin L. Cohen,et al.  Electronic structure of solids , 1984 .

[20]  P. Weightman,et al.  An X-ray and ultraviolet photoemission investigation of the density of states of metallic Mg , 1984 .

[21]  Roberto Dovesi,et al.  Ab initio study of metallic beryllium , 1982 .

[22]  G. Wertheim,et al.  Many-body processes in x-ray photoemission line shapes from Li, Na, Mg, and Al metals , 1977 .

[23]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[24]  F. M. Mueller,et al.  The Fermi Surface of Magnesium III: Local and Nonlocal Pseudopotential Band Structure Models for Magnesium , 1967 .

[25]  R. Stark Fermi Surface of Magnesium. II: The de Haas—van Alphen Effect , 1967 .

[26]  J. Ketterson,et al.  Fermi surface of magnesium. I. Magnetoacoustic attenuation , 1967 .

[27]  G. Squires Measurements of the frequencies of the normal modes of magnesium , 1966 .

[28]  L. Falicov The band structure and Fermi surface of magnesium , 1962, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  W. Köster,et al.  POISSON'S RATIO FOR METALS AND ALLOYS , 1961 .

[30]  C. Kittel Introduction to solid state physics , 1954 .

[31]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  A. Freeman,et al.  Band-Structure Contributions to X-Ray Emission and Absorption Spectra and Edges in Magnesium , 1976 .