A First Look at BISTRO Observations of the ρ Oph-A core

We present 850 μm imaging polarimetry data of the ρ Oph-A core taken with the Submillimeter Common-User Bolometer Array-2 (SCUBA-2) and its polarimeter (POL-2) as part of our ongoing survey project, -fields In STar forming RegiOns (BISTRO). The polarization vectors are used to identify the orientation of the magnetic field projected on the plane of the sky at a resolution of 0.01 pc. We identify 10 subregions with distinct polarization fractions and angles in the 0.2 pc ρ Oph-A core; some of them can be part of a coherent magnetic field structure in the ρ Oph region. The results are consistent with previous observations of the brightest regions of ρ Oph-A, where the degrees of polarization are at a level of a few percent, but our data reveal for the first time the magnetic field structures in the fainter regions surrounding the core where the degree of polarization is much higher (>5%). A comparison with previous near-infrared polarimetric data shows that there are several magnetic field components that are consistent at near-infrared and submillimeter wavelengths. Using the Davis–Chandrasekhar–Fermi method, we also derive magnetic field strengths in several subcore regions, which range from approximately 0.2 to 5 mG. We also find a correlation between the magnetic field orientations projected on the sky and the core centroid velocity components.

Lei Zhu | A. Scaife | P. Koch | A. Whitworth | N. Peretto | G. Fuller | P. Andre' | H. Chen | T. Nakagawa | T. Onaka | M. Tamura | Sang-Sung Lee | D. Byun | D. Johnstone | P. Bastien | Jongsoo Kim | G. Savini | J. Francesco | B. Matthews | Di Li | P. Friberg | M. Seta | J. Kwon | T. Nagata | Tsuyoshi Inoue | W. Chen | K. Kawabata | S. Eyres | S. Falle | M. Griffin | W. Holland | J. Greaves | G. Moriarty-Schieven | T. Hasegawa | D. Ward-Thompson | J. Hatchell | A. Chrysostomou | J. Fiege | R. Friesen | S. Graves | M. Houde | J. Kirk | J. Richer | K. Lacaille | C. Dowell | A. Kataoka | R. Rao | M. Rawlings | H. Parsons | Jia‐Wei Wang | L. Qian | K. Qiu | T. Ching | Jinghua Yuan | A. Rigby | Jianjun Zhou | Da-lei Li | Miju Kang | Il-Gyo Jeong | H. Nakanishi | Jeong-Eun Lee | Kee-Tae Kim | Hongchi Wang | Tie Liu | Ji-hyun Kang | S. Inutsuka | F. Kemper | Minho Choi | Sung-ju Kang | Jungyeon Cho | H. Yoo | D. Berry | T. Pyo | F. Nakamura | S. Loo | D. Arzoumanian | Guoyin Zhang | Junhao Liu | Y. Doi | Chuan-Peng Zhang | Hua-b. Li | Sheng-Yuan Liu | S. Lai | A. Soam | C. Lee | Ya-Wen Tang | Gwanjeong Kim | S. Mairs | Shinyoung Kim | K. Pattle | W. Kwon | E. Chung | A. Pon | S. Hayashi | M. Matsumura | S. Sadavoy | K. Tomisaka | Y. Tsukamoto | Hsi-Wei Yen | N. Ohashi | K. Iwasaki | Yusuke Aso | H. Shinnaga | S. Coudé | E. Drabek-Maunder | T. Gledhill | Mi-Ryang Kim | R. Furuya | C. Eswaraiah | K. Kim | A. Lyo | B. Retter | Mike Chen | Thiem C. Hoang | T. Zenko | Masato I. N. Kobayashi | E. Franzmann | Hong-Li Liu | Q. Gu | J. Robitaille | Yoshihiro Kanamori | H. Saito | T. Inoue | S. Lai | Hongli Liu | Chuan-peng Zhang | W. Chen | Ya-wen Tang | P. Andre'

[1]  P. Koch,et al.  The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament , 2017, 1707.05269.

[2]  Saeko S. Hayashi,et al.  First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt , 2017, 1704.08552.

[3]  A. Lazarian,et al.  VELOCITY GRADIENTS AS A TRACER FOR MAGNETIC FIELDS , 2016, 1608.06867.

[4]  L. Hartmann,et al.  THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). I. TRIGONOMETRIC PARALLAX DISTANCES AND DEPTH OF THE OPHIUCHUS COMPLEX , 2016, 1611.06466.

[5]  Giorgio Savini,et al.  POL-2: a polarimeter for the James-Clerk-Maxwell telescope , 2016, Astronomical Telescopes + Instrumentation.

[6]  P. Hennebelle,et al.  Magnetic field morphology in nearby molecular clouds as revealed by starlight and submillimetre polarization , 2016, 1605.09371.

[7]  Enzo Pascale,et al.  BALLOON-BORNE SUBMILLIMETER POLARIMETRY OF THE VELA C MOLECULAR CLOUD: SYSTEMATIC DEPENDENCE OF POLARIZATION FRACTION ON COLUMN DENSITY AND LOCAL POLARIZATION-ANGLE DISPERSION , 2015, 1509.05298.

[8]  G. W. Pratt,et al.  Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds , 2015, 1502.04123.

[9]  A. Lazarian,et al.  Grain Alignment: Role of Radiative Torques and Paramagnetic Relaxation , 2015, 1511.03696.

[10]  J. Hough,et al.  WIDE-FIELD INFRARED POLARIMETRY OF THE ρ OPHIUCHI CLOUD CORE , 2015 .

[11]  J. Pineda,et al.  The JCMT Gould Belt Survey: a quantitative comparison between SCUBA-2 data reduction methods , 2015, 1509.06385.

[12]  Ludmilla Kolokolova,et al.  Polarimetry of Stars and Planetary Systems , 2015 .

[13]  J. Francesco,et al.  Akari, SCUBA2 and Herschel data of pre-stellar cores , 2015, 1503.06121.

[14]  E. Rosolowsky,et al.  The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population , 2015, 1502.05858.

[15]  E. Rosolowsky,et al.  The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud , 2014, 1411.1428.

[16]  M. Tamura,et al.  NEAR-IR IMAGING POLARIMETRY TOWARD A BRIGHT-RIMMED CLOUD: MAGNETIC FIELD IN SFO 74 , 2014, 1411.1813.

[17]  The Magnetic Field of Cloud 3 in L204 , 2014, 1407.3279.

[18]  Joshua O. Gundersen,et al.  LUPUS I OBSERVATIONS FROM THE 2010 FLIGHT OF THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE FOR POLARIMETRY , 2013, 1307.5853.

[19]  A. Roman-Lopes,et al.  OPTICAL/NEAR-INFRARED POLARIZATION SURVEY OF Sh 2-29: MAGNETIC FIELDS, DENSE CLOUD FRAGMENTATIONS, AND ANOMALOUS DUST GRAIN SIZES , 2013, 1310.7037.

[20]  Satoshi Yamamoto,et al.  New Trends in Radio Astronomy in the ALMA Era the 30th Anniversary of Nobeyama Radio Observatory : proceedings of a symposium held at Hakone, Japan, 3-8 December 2012 , 2013 .

[21]  Astrophysics,et al.  SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS , 2013, 1304.0436.

[22]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[23]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[24]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[25]  N. Peretto,et al.  Herschel view of the Taurus B211/3 filament and striations: evidence of filamentary growth? , 2012, 1211.6360.

[26]  R. Kawabe,et al.  SUBSTELLAR-MASS CONDENSATIONS IN PRESTELLAR CORES , 2012, 1209.3801.

[27]  D. Johnstone,et al.  Molecular line contamination in the SCUBA-2 450 and 850 μm continuum data , 2012, 1204.6180.

[28]  J. Hough,et al.  COMPLEX SCATTERED RADIATION FIELDS AND MULTIPLE MAGNETIC FIELDS IN THE PROTOSTELLAR CLUSTER IN NGC 2264 , 2011, 1108.2341.

[29]  M. Tamura,et al.  NEAR-INFRARED-IMAGING POLARIMETRY TOWARD SERPENS SOUTH: REVEALING THE IMPORTANCE OF THE MAGNETIC FIELD , 2011, 1104.2977.

[30]  Scotland,et al.  The immediate environment of the Class 0 protostar VLA 1623, on scales of ∼50–100 au, observed at millimetre and centimetre wavelengths , 2011, 1104.2170.

[31]  Zhi-Yun Li,et al.  THE MOLECULAR OUTFLOWS IN THE ρ OPHIUCHI MAIN CLOUD: IMPLICATIONS FOR TURBULENCE GENERATION , 2010, 1010.2290.

[32]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[33]  Jessie L. Dotson,et al.  350 μm POLARIMETRY FROM THE CALTECH SUBMILLIMETER OBSERVATORY , 2010, 1001.2790.

[34]  M. Tamura,et al.  MAGNETIC FIELD STRUCTURE OF THE HH 1–2 REGION: NEAR-INFRARED POLARIMETRY OF POINT-LIKE SOURCES , 2009, 0911.2049.

[35]  Brenda C. Matthews,et al.  THE LEGACY OF SCUPOL: 850 μm IMAGING POLARIMETRY FROM 1997 TO 2005 , 2009 .

[36]  M. Hogerheijde,et al.  The nature of the Class I population in Ophiuchus as revealed through gas and dust mapping , 2009, 0902.4005.

[37]  A. Lazarian,et al.  GRAIN ALIGNMENT INDUCED BY RADIATIVE TORQUES: EFFECTS OF INTERNAL RELAXATION OF ENERGY AND COMPLEX RADIATION FIELD , 2008, 0812.4576.

[38]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[39]  Jessie L. Dotson,et al.  DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. II. , 2008, 0909.5227.

[40]  F. O. Alves,et al.  Optical polarimetry toward the Pipe nebula: revealing the importance of the magnetic field , 2008, 0806.1189.

[41]  T. Snow,et al.  A Study of the ρ Ophiuchi Cloud: Mapping the Distribution and the Motions of Interstellar Gas , 2008 .

[42]  M. Lombardi,et al.  Hipparcos distance estimates of the Ophiuchus and the Lupus cloud complexes , 2008, 0801.3346.

[43]  L. Loinard,et al.  A Preliminary VLBA Distance to the Core of Ophiuchus, with an Accuracy of 4% , 2008, 0801.2192.

[44]  G. Kowal,et al.  Studies of Regular and Random Magnetic Fields in the ISM: Statistics of Polarization Vectors and the Chandrasekhar-Fermi Technique , 2008, 0801.0279.

[45]  E. Mamajek On the distance to the Ophiuchus star-forming region , 2007, 0709.0505.

[46]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[47]  G. Novak,et al.  DISPERSION OF OBSERVED POSITION ANGLES OF SUBMILLIMETER POLARIZATION IN MOLECULAR CLOUDS , 2007, 0707.2818.

[48]  A. Whitworth,et al.  The James Clerk Maxwell Telescope Legacy Survey of Nearby Star‐forming Regions in the Gould Belt , 2007, 0707.0169.

[49]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[50]  N. Peretto,et al.  The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations , , 2007, 0706.1535.

[51]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[52]  J. Hough,et al.  Near-Infrared Imaging Polarimetry of the Star-Forming Region NGC 2024 , 2007, astro-ph/0702597.

[53]  Ryo Kandori,et al.  Near-Infrared Imaging Polarimetry of the NGC 2071 Star-Forming Region with SIRPOL , 2007, astro-ph/0701552.

[54]  P. Bastien,et al.  Comparison of Magnetic Field Structures on Different Scales in and around the Filamentary Dark Cloud GF 9 , 2006, astro-ph/0608188.

[55]  John E. Vaillancourt,et al.  Placing Confidence Limits on Polarization Measurements , 2006, astro-ph/0603110.

[56]  S. Potter,et al.  A high sampling-density polarization study of the Southern Coalsack , 2005 .

[57]  M. Houde Evaluating the Magnetic Field Strength in Molecular Clouds , 2004, astro-ph/0410316.

[58]  P. Andre',et al.  Quiescent Dense Gas in Protostellar Clusters: The Ophiuchus A Core , 2004, astro-ph/0408411.

[59]  L. Rebull,et al.  Stellar Rotation in Young Clusters: The First 4 Million Years , 2004 .

[60]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[61]  J. Girart,et al.  Interferometric Mapping of Magnetic Fields in Star-forming Regions. II. NGC 2024 FIR 5 , 2001, astro-ph/0110682.

[62]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[63]  B. Matthews,et al.  Magnetic Fields in Star-forming Molecular Clouds. II. The Depolarization Effect in the OMC-3 Filament of Orion A , 2001, astro-ph/0106394.

[64]  M. Norman,et al.  Magnetic Field Diagnostics Based on Far-Infrared Polarimetry: Tests Using Numerical Simulations , 2001, astro-ph/0103286.

[65]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[66]  D. Johnstone,et al.  Large-Area Mapping at 850 Microns. II. Analysis of the Clump Distribution in the ρ Ophiuchi Molecular Cloud , 2000 .

[67]  B. Elmegreen Modeling a High-Mass Turn-Down in the Stellar Initial Mass Function , 2000, astro-ph/0005455.

[68]  Lee G. Mundy,et al.  Unveiling the Circumstellar Envelope and Disk: A Subarcsecond Survey of Circumstellar Structures , 1999, astro-ph/9908301.

[69]  Jun-Ichi Morino,et al.  First Detection of Submillimeter Polarization from T Tauri Stars , 1999 .

[70]  T. Umemoto,et al.  The Ortho-to-Para Ratio of Ammonia in the L1157 Outflow , 1999, The Astrophysical journal.

[71]  D. Johnstone,et al.  Submillimeter Continuum Emission in the ρ Ophiuchi Molecular Cloud: Filaments, Arcs, and an Unidentified Far-Infrared Object , 1999, astro-ph/9901133.

[72]  J. Bally,et al.  Velocity Field Statistics in Star-forming Regions. I. Centroid Velocity Observations , 1998, astro-ph/9810427.

[73]  S. Miyama,et al.  An Origin of Filamentary Structure in Molecular Clouds , 1998 .

[74]  L. Chernin,et al.  BIMA Observations of the VLA 1623 Molecular Outflow , 1997 .

[75]  B. Reipurth,et al.  Herbig-Haro flows and the birth of low mass stars : proceedings of the 182nd Symposium of the International Astronomical Union, held in Chamonix, France, 20-26 January 1997 , 1997 .

[76]  F. Malbet,et al.  Low Mass Star Formation - from Infall to Outflow , 1997 .

[77]  W. Dent,et al.  CO and shocked H_2 in the highly collimated outflow from VLA 1623 , 1995 .

[78]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[79]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[80]  A. Goodman,et al.  The structure of magnetic fields in dark clouds: Infrared polarimetry in B216-217 , 1992 .

[81]  A. Wootten,et al.  Cold DCO(+) cores and protostars in the warm Rho Ophiuchi cloud , 1990 .

[82]  E. I. Robson,et al.  Infrared and submillimetre observations of the ρ Ophiuchi dark cloud , 1989 .

[83]  R. Loren Cobwebs of Ophiuchus. II. (C-13)O filament kinematics , 1989 .

[84]  R. Loren The Cobwebs of Ophiuchus. I. Strands of 13CO: The Mass Distribution , 1989 .

[85]  A. Goodman,et al.  Magnetic molecular clouds: indirect evidence for magnetic support and ambipolar diffusion , 1988 .

[86]  M. Tamura,et al.  Infrared polarimetry of dark clouds. III: The relationship between the magnetic field and star formation in the NGC 1333 region , 1988 .

[87]  M. Tamura,et al.  Infrared polarimetry of dark clouds – II. Magnetic field structure in the ρ Ophiuchi dark cloud , 1988 .

[88]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[89]  M. Tamura,et al.  Infrared polarimetry of dark clouds – I. Magnetic field structure in Heiles Cloud 2 , 1987 .

[90]  A. Wootten,et al.  Massive prestellar molecular core and adjacent compression front in the Rho Ophiuchi cloud , 1986 .

[91]  G. Rieke,et al.  Infrared polarimetry in the rho Ophiuchus dark cloud. , 1979 .

[92]  F. Vrba Role of magnetic fields in the evolution of five dark cloud complexes , 1977 .

[93]  F. Vrba,et al.  Magnetic field structure in the vicinity of five dark cloud complexes. , 1976 .

[94]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[95]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[96]  L. Davis,et al.  The Strength of Interstellar Magnetic Fields , 1951 .