Optical gain characteristics of staggered InGaN quantum wells lasers

Staggered InGaN quantum wells (QWs) are analyzed as improved gain media for laser diodes (LDs) lasing at 440 and 500 nm. The calculation of band structure is based on a 6-band k⋅p method taking into account the valence band mixing, strain effect, and spontaneous and piezoelectric polarizations as well as the carrier screening effect. Staggered InGaN QWs with two-layer and three-layer step-function like In-content InGaN QWs structures are investigated to enhance the optical gain as well as to reduce the threshold current density for LDs emitting at 440 and 500 nm. Our analysis shows that the optical gain is enhanced by 1.5–2.1 times by utilizing the staggered InGaN QW active region emitting at 440 nm, which leads to a reduction of the threshold current density up to 24% as compared to that of the conventional InGaN QW laser. Staggered InGaN QWs with enhanced optical gain shows significantly reduced blue-shift as carrier density increases, which enables nitride QWs with high optical gain in the green spectr...

[1]  Yik-Khoon Ee,et al.  Self-Consistent Analysis of Strain-Compensated InGaN–AlGaN Quantum Wells for Lasers and Light-Emitting Diodes , 2009, IEEE Journal of Quantum Electronics.

[2]  Z. J. Yang,et al.  Analysis of optical gain property in the InGaN/GaN triangular shaped quantum well under the piezoelectric field , 2009 .

[3]  Ronald A. Arif,et al.  Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes , 2007 .

[4]  James S. Speck,et al.  Nonpolar InxGa1-xN/GaN(1(1)over-bar00) multiple quantum wells grown on gamma-LiAlO2(100) by plasma-assisted molecular-beam epitaxy , 2003 .

[5]  Paolo Lugli,et al.  Many-body effects on excitons properties in GaN/AlGaN quantum wells , 2000 .

[6]  Ronald A. Arif,et al.  Optical gain analysis of strain-compensated InGaN–AlGaN quantum well active regions for lasers emitting at 420–500 nm , 2008, 2007 International Conference on Numerical Simulation of Optoelectronic Devices.

[7]  Yoichi Kawakami,et al.  Photoluminescence property of InGaN single quantum well with embedded AlGaN δ layer , 2006 .

[8]  Takashi Mukai,et al.  Blue InGaN-based laser diodes with an emission wavelength of 450 nm , 2000 .

[9]  Seoung-Hwan Park,et al.  Dip-shaped InGaN/GaN quantum-well light-emitting diodes with high efficiency , 2009 .

[10]  U. Schwarz,et al.  Nitride Semiconductor Devices , 2007 .

[11]  Hiroaki Ohta,et al.  Continuous-Wave Operation of m-Plane InGaN Multiple Quantum Well Laser Diodes , 2007 .

[12]  Ronald A. Arif,et al.  Type-II InGaN-GaNAs quantum wells for lasers applications , 2008 .

[13]  Hans Christian Schneider,et al.  Contributions to the large blue emission shift in a GaAsSb type-II laser , 2001 .

[14]  S. Lutgen,et al.  On the importance of radiative and Auger losses in GaN-based quantum wells , 2008 .

[15]  Hongping Zhao,et al.  Design Analysis of Staggered InGaN Quantum Wells Light-Emitting Diodes at 500–540 nm , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Weng W. Chow,et al.  Laser gain properties of AlGaN quantum wells , 2005 .

[17]  Shun Lien Chuang,et al.  A band-structure model of strained quantum-well wurtzite semiconductors , 1997 .

[18]  Shun Lien Chuang,et al.  Physics of Photonic Devices , 2009 .

[19]  Y. Kuo,et al.  Improvement in piezoelectric effect of violet InGaN laser diodes , 2008 .

[20]  P. Blood,et al.  Time Evolution of the Screening of Piezoelectric Fields in InGaN Quantum Wells , 2005, IEEE Journal of Quantum Electronics.

[21]  H. Ryu,et al.  High-Performance Blue InGaN Laser Diodes With Single-Quantum-Well Active Layers , 2007, IEEE Photonics Technology Letters.

[22]  S. Chuang,et al.  Electronic and Optical Properties of ${\rm a}$- and ${\rm m}$-Plane Wurtzite InGaN–GaN Quantum Wells , 2007, IEEE Journal of Quantum Electronics.

[23]  N. Tansu,et al.  Nanostructure engineering of staggered InGaN quantum wells light emitting diodes emitting at 420–510 nm , 2008 .

[24]  A. Andreev,et al.  Calculation of electric field and optical transitions in InGaN∕GaN quantum wells , 2005 .

[25]  Nelson Tansu,et al.  Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile , 2009 .

[26]  Andreas Breidenassel,et al.  500 nm electrically driven InGaN based laser diodes , 2009 .

[27]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[28]  Seoung-Hwan Park,et al.  Electronic and optical properties of staggered InGaN/InGaN quantum‐well light‐emitting diodes , 2009 .

[29]  Shun Lien Chuang,et al.  Optical gain of strained wurtzite GaN quantum-well lasers , 1996 .

[30]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[31]  Jack Dongarra,et al.  NanoPSE: Nanoscience Problem Solving Environment for atomistic electronic structure of semiconductor nanostructures , 2005 .

[32]  Nelson Tansu,et al.  Current injection efficiency of InGaAsN quantum-well lasers , 2005 .

[33]  Yik-Khoon Ee,et al.  Spontaneous Emission and Characteristics of Staggered InGaN Quantum-Well Light-Emitting Diodes , 2008, IEEE Journal of Quantum Electronics.

[34]  James S. Speck,et al.  Nonpolar InGaN∕GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak , 2004 .

[35]  Zhiping Yu,et al.  Atomistic Approach to Thickness-Dependent Bandstructure Calculation of InSb UTB , 2007, IEEE Transactions on Nanotechnology.

[36]  Takashi Miyoshi,et al.  510–515 nm InGaN-Based Green Laser Diodes on c-Plane GaN Substrate , 2009 .

[37]  Hyun-Surk Kim,et al.  Highly stable temperature characteristics of InGaN blue laser diodes , 2006 .

[38]  Euijoon Yoon,et al.  Optical gain in InGaN∕GaN quantum well structures with embedded AlGaN δ layer , 2007 .

[39]  K. Delaney,et al.  Auger recombination rates in nitrides from first principles , 2009, 0904.3559.

[40]  Ronald A. Arif,et al.  Self-consistent gain analysis of type-II ‘W’ InGaN–GaNAs quantum well lasers , 2008 .

[41]  J. Piprek Nitride semiconductor devices : principles and simulation , 2007 .

[42]  W. Chow,et al.  Quantum Well Width Dependence of Threshold Current Density in InGaN Lasers , 1999 .

[43]  Nelson Tansu,et al.  Extremely low threshold-current-density InGaAs quantum-well lasers with emission wavelength of 1215-1233 nm , 2003 .

[44]  Seoung-Hwan Park,et al.  High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes , 2009 .

[45]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[46]  Y.-C. Hsu,et al.  Structure asymmetry effects in the optical gain of piezostrained InGaN quantum wells , 1999 .

[47]  Michael R. Krames,et al.  Auger recombination in InGaN measured by photoluminescence , 2007 .

[48]  Ronald A. Arif,et al.  Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime , 2009 .

[49]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .