Unpredicted concurrency between P,P-chelate and P,P-bridge coordination modes of 1,5-diR-3,7-di(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane ligands in copper(I) complexes

[1]  C. Bannwarth,et al.  Pyridyl Containing 1,5‐Diaza‐3,7‐diphosphacyclooctanes as Bridging Ligands for Dinuclear Copper(I) Complexes , 2017 .

[2]  S. Katsyuba,et al.  “Host–guest” binding of a luminescent dinuclear Au(I) complex based on cyclic diphosphine with organic substrates as a reason for luminescence tuneability , 2016 .

[3]  S. Tunik,et al.  A stimuli-responsive Au(I) complex based on an aminomethylphosphine template: synthesis, crystalline phases and luminescence properties , 2016 .

[4]  C. Bannwarth,et al.  Synthesis of novel pyridyl containing phospholanes and their polynuclear luminescent copper(i) complexes. , 2016, Dalton transactions.

[5]  O. Sinyashin,et al.  Cyclic Phosphino Amino Pyridines—Novel Instrument for Construction of Catalysts and Luminescent Materials , 2015 .

[6]  O. Sinyashin,et al.  Heterocyclic Phosphines with P-C-X Fragments (X=O, N, P) , 2015 .

[7]  J. Mague,et al.  Short-bite PNP ligand-supported rare tetranuclear [Cu4I4] clusters: structural and photoluminescence studies. , 2014, Inorganic chemistry.

[8]  E. Hey‐Hawkins,et al.  New functional cyclic aminomethylphosphine ligands for the construction of catalysts for electrochemical hydrogen transformations. , 2014, Chemistry.

[9]  Monte L. Helm,et al.  Controlling proton movement: electrocatalytic oxidation of hydrogen by a nickel(II) complex containing proton relays in the second and outer coordination spheres. , 2014, Dalton transactions.

[10]  Martin Nieger,et al.  Copper(I) complexes based on five-membered P^N heterocycles: structural diversity linked to exciting luminescence properties. , 2013, Inorganic chemistry.

[11]  O. Sinyashin,et al.  New aminomethylphosphines with cyanophenyl substituents at the nitrogen atoms , 2013, Russian Chemical Bulletin.

[12]  O. Sinyashin,et al.  Chelating Cyclic Aminomethylphosphines and Their Transition Metal Complexes as a Promising Basis of Bioinspired Mimetic Catalysts , 2013 .

[13]  Daniel M. Zink,et al.  Molecular construction kit for tuning solubility, stability and luminescence properties: Heteroleptic MePyrPHOS-copper iodide-complexes and their application in organic light-emitting diodes , 2013 .

[14]  Monte L. Helm,et al.  Production of H2 at fast rates using a nickel electrocatalyst in water-acetonitrile solutions. , 2013, Chemical communications.

[15]  D. Dubois,et al.  Proton delivery and removal in [Ni(P(R)2N(R')2)2]2+ hydrogen production and oxidation catalysts. , 2012, Journal of the American Chemical Society.

[16]  D. Dubois,et al.  Synthesis, characterization, and reactivity of Fe complexes containing cyclic diazadiphosphine ligands: the role of the pendant base in heterolytic cleavage of H2. , 2012, Journal of the American Chemical Society.

[17]  E. Hey‐Hawkins,et al.  Structure and dynamics of P,N-containing heterocycles and their metal complexes in solution. , 2012, The journal of physical chemistry. A.

[18]  Monte L. Helm,et al.  Electrocatalytic oxidation of formate by [Ni(P(R)2N(R')2)2(CH3CN)]2+ complexes. , 2011, Journal of the American Chemical Society.

[19]  R. Morris Bullock,et al.  A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s−1 for H2 Production , 2011, Science.

[20]  Simone Raugei,et al.  Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen. , 2011, Journal of the American Chemical Society.

[21]  Daniel L DuBois,et al.  [Ni(P(Ph)2N(C6H4X)2)2]2+ complexes as electrocatalysts for H2 production: effect of substituents, acids, and water on catalytic rates. , 2011, Journal of the American Chemical Society.

[22]  C. Len,et al.  Suzuki-Miyaura cross-coupling coupling reactions with low catalyst loading: a green and sustainable protocol in pure water. , 2011, Dalton transactions.

[23]  Michel Dupuis,et al.  Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines. , 2010, Chemical communications.

[24]  O. E. Naumova,et al.  First representative of optically active P-L-menthyl-substituted (aminomethyl)phosphine and its borane and metal complexes. , 2010, Inorganic chemistry.

[25]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[26]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[27]  G. P. Belov,et al.  Synthesis, structure, and transition metal complexes of amphiphilic 1,5‐diaza‐3,7‐diphosphacyclooctanes , 2006 .

[28]  E. Hey‐Hawkins,et al.  Synthesis and molecular structure of a chiral ferrocenylphosphine , 2005 .

[29]  E. Hey‐Hawkins,et al.  Novel chiral 1,5-diaza-3,7-diphosphacyclooctane ligands and their transition metal complexes , 2003 .

[30]  A. S. Balueva,et al.  Synthesis of New Phosphines and P-Heterocycles from Phosphonates Containing Allyl Group , 2002 .

[31]  E. Hey‐Hawkins,et al.  Water-soluble aminomethyl(ferrocenylmethyl)phosphines and their trinuclear transition metal complexes , 2002 .

[32]  O. Sinyashin,et al.  Synthesis of novel water-soluble linear and heterocyclic phosphino amino acids from 2-phosphinophenols or 2-phosphinophenolethers, formaldehyde and amino acids , 2001 .

[33]  A. Gubaidullin,et al.  Synthesis, structures, and properties of 3,6-di-tert-butyl-o-benzosemiquinone complexes of copper(i) with 1,5-diaza-3,7-diphosphacyclooctanes , 2000 .