Bose-einstein condensation of trapped interacting spin-1 atoms

We investigate Bose-Einstein condensation of trapped spin-1 atoms with ferromagnetic or antiferromagnetic two-body contact interactions. We adopt the mean field theory and develop a Hartree-Fock-Popov type approximation in terms of a semiclassical two-fluid model. For antiferromagnetic interactions, our study reveals double condensations as atoms in the |m{sub F}=0> state never seem to condense under the constraints of both the conservation of total atom number N and magnetization M. For ferromagnetic interactions, however, triple condensations can occur. Our results can be conveniently understood in terms of the interplay of three factors: (anti)ferromagnetic atom-atom interactions, M conservation, and the miscibilities between and among different condensed components.

[1]  Double Phase Transitions in Magnetized Spinor Bose-Einstein Condensation , 2000, cond-mat/0005289.

[2]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[3]  Ho,et al.  Fragmented and single condensate ground states of spin-1 bose Gas , 2000, Physical review letters.

[4]  C. K. Law,et al.  Quantum Spins Mixing in Spinor Bose-Einstein Condensates , 1998 .

[5]  Y.-C. Tsai,et al.  Transition temperature for the all-optical formation of F=1 spinor condensate , 2002 .

[6]  T L Gustavson,et al.  Sodium Bose-Einstein condensates in the F = 2 state in a large-volume optical trap. , 2003, Physical review letters.

[7]  D Kielpinski,et al.  Coreless vortex formation in a spinor Bose-Einstein condensate. , 2003, Physical review letters.

[8]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[9]  M. Greiner,et al.  Observation of resonance condensation of fermionic atom pairs. , 2004, Physical review letters.

[10]  Nonanalytic dependence of the transition temperature of the homogeneous dilute Bose gas on scattering length. , 2001, Physical review letters.

[11]  M D Barrett,et al.  Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates. , 2003, Physical review letters.

[12]  W. Ketterle,et al.  Condensation of pairs of fermionic atoms near a Feshbach resonance. , 2004, Physical review letters.

[13]  Condensate fraction and critical temperature of a trapped interacting Bose gas. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  M D Barrett,et al.  All-optical formation of an atomic Bose-Einstein condensate. , 2001, Physical review letters.

[15]  D. Kleppner,et al.  Bose-Einstein condensation in an external potential. , 1987, Physical review. A, General physics.

[16]  S. Giorgini,et al.  Thermodynamics of a Trapped Bose-Condensed Gas , 1997 .

[17]  W. Ketterle,et al.  Observation of Metastable States in Spinor Bose-Einstein Condensates , 1999 .

[18]  Li You,et al.  Mean field ground state of a spin-1 condensate in a magnetic field , 2003 .

[19]  J J Arlt,et al.  Dynamics of F=2 spinor Bose-Einstein condensates. , 2003, Physical review letters.

[20]  W. Ketterle,et al.  Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  Ueda,et al.  Exact eigenstates and magnetic response of spin-1 and spin-2 bose-einstein condensates , 2000, Physical review letters.

[22]  S. Kokkelmans,et al.  Interisotope determination of ultracold rubidium interactions from three high-precision experiments. , 2001, Physical review letters.

[23]  O. Dulieu,et al.  Simple determination of Na , 1999 .

[24]  Tin-Lun Ho Spinor Bose Condensates in Optical Traps , 1998 .

[25]  W. Ketterle,et al.  Spin domains in ground-state Bose–Einstein condensates , 1998, Nature.

[26]  Tetsuo Ohmi,et al.  Bose-Einstein Condensation with Internal Degrees of Freedom in Alkali Atom Gases , 1998 .

[27]  W. Ketterle,et al.  OPTICAL CONFINEMENT OF A BOSE-EINSTEIN CONDENSATE , 1998 .