CLP(BN): Constraint Logic Programming for Probabilistic Knowledge

In Datalog, missing values are represented by Skolem constants. More generally, in logic programming missing values, or existentially quantified variables, are represented by terms built from Skolem functors. The CLP(BN) language represents the joint probability distribution over missing values in a database or logic program by using constraints to represent Skolem functions. Algorithms from inductive logic programming (ILP) can be used with only minor modification to learn CLP(BN) programs. An implementation of CLP(BN) is publicly available as part of YAP Prolog at http://www.ncc.up.pt/~vsc/Yap.

[1]  Rina Dechter,et al.  Bucket Elimination: A Unifying Framework for Reasoning , 1999, Artif. Intell..

[2]  Luc De Raedt,et al.  Bayesian Logic Programs , 2001, ILP Work-in-progress reports.

[3]  Jesse Davis,et al.  Change of Representation for Statistical Relational Learning , 2007, IJCAI.

[4]  David Poole,et al.  Probabilistic Horn Abduction and Bayesian Networks , 1993, Artif. Intell..

[5]  Jr. Charles David Page Anti-unification in constraint logics: foundations and applications to learnability in first-order logic, to speed-up learning, and to deduction , 1993 .

[6]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[7]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[8]  Luc De Raedt,et al.  Probabilistic Inductive Logic Programming , 2004, Probabilistic Inductive Logic Programming.

[9]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[10]  Ben Taskar,et al.  Probabilistic Relational Models , 2014, Encyclopedia of Social Network Analysis and Mining.

[11]  David Page,et al.  Modelling regulatory pathways in E. coli from time series expression profiles , 2002, ISMB.

[12]  L. De Raedt,et al.  Logical Hidden Markov Models , 2011, J. Artif. Intell. Res..

[13]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[14]  Luc De Raedt,et al.  ProbLog: A Probabilistic Prolog and its Application in Link Discovery , 2007, IJCAI.

[15]  Adnan Darwiche,et al.  Compiling Bayesian Networks Using Variable Elimination , 2007, IJCAI.

[16]  Luc De Raedt,et al.  Relational Sequence Learning , 2008, Probabilistic Inductive Logic Programming.

[17]  Jesse Davis,et al.  View Learning for Statistical Relational Learning: With an Application to Mammography , 2005, IJCAI.

[18]  Peter Haddawy,et al.  An Overview of Some Recent Developments in Bayesian Problem-Solving Techniques , 1999, AI Mag..

[19]  Luc De Raedt,et al.  Towards Combining Inductive Logic Programming with Bayesian Networks , 2001, ILP.

[20]  Luc De Raedt,et al.  nFOIL: Integrating Naïve Bayes and FOIL , 2005, AAAI.

[21]  Luc De Raedt,et al.  Towards Discovering Structural Signatures of Protein Folds Based on Logical Hidden Markov Models , 2003, Pacific Symposium on Biocomputing.

[22]  L. Getoor,et al.  Logic-based Formalisms for Statistical Relational Learning , 2007 .

[23]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[24]  Michael I. Jordan,et al.  Variational Probabilistic Inference and the QMR-DT Network , 2011, J. Artif. Intell. Res..

[25]  Peter Haddawy,et al.  Probabilistic Logic Programming and Bayesian Networks , 1995, ASIAN.

[26]  Jean-Jacques Lévy,et al.  Algorithms, Concurrency and Knowledge , 1995, Lecture Notes in Computer Science.

[27]  Taisuke Sato,et al.  New Advances in Logic-Based Probabilistic Modeling by PRISM , 2008, Probabilistic Inductive Logic Programming.

[28]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[29]  Nicos Angelopoulos Probabilistic finite domains , 2001 .

[30]  Pedro M. Domingos,et al.  Dynamic Probabilistic Relational Models , 2003, IJCAI.

[31]  David Page,et al.  Inferring Regulatory Networks from Time Series Expression Data and Relational Data Via Inductive Logic Programming , 2007, ILP.

[32]  Yoshitaka Kameya,et al.  Parameter Learning of Logic Programs for Symbolic-Statistical Modeling , 2001, J. Artif. Intell. Res..

[33]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[34]  S. Muggleton Stochastic Logic Programs , 1996 .

[35]  Avi Pfeffer,et al.  Learning Probabilities for Noisy First-Order Rules , 1997, IJCAI.

[36]  Sanford Weisberg,et al.  Computing science and statistics : proceedings of the 30th Symposium on the Interface, Minneapolis, Minnesota, May 13-16, 1998 : dimension reduction, computational complexity and information , 1998 .

[37]  Nicos Angelopoulos Probabilistic Finite Domains: A Brief Overview , 2002, ICLP.

[38]  Luc De Raedt,et al.  Adaptive Bayesian Logic Programs , 2001, ILP.

[39]  Stefan Schaal,et al.  Natural Actor-Critic , 2003, Neurocomputing.

[40]  John S. Breese,et al.  CONSTRUCTION OF BELIEF AND DECISION NETWORKS , 1992, Comput. Intell..

[41]  Hendrik Blockeel Prolog for Bayesian networks: A meta-interpreter approach , 2003 .

[42]  I. V. Ramakrishnan,et al.  Efficient Tabling Mechanisms for Logic Programs , 1995, ICLP.

[43]  Alex Waibel,et al.  Readings in speech recognition , 1990 .

[44]  David Page,et al.  KDD Cup 2001 report , 2002, SKDD.

[45]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[46]  Adnan Darwiche,et al.  A Variational Approach for Approximating Bayesian Networks by Edge Deletion , 2006, UAI.

[47]  Lawrence R. Rabiner,et al.  A tutorial on Hidden Markov Models , 1986 .

[48]  Ricardo Rocha,et al.  On applying or-parallelism and tabling to logic programs , 2003, Theory and Practice of Logic Programming.

[49]  Pedro M. Domingos,et al.  Sound and Efficient Inference with Probabilistic and Deterministic Dependencies , 2006, AAAI.

[50]  Kevin Murphy,et al.  Bayes net toolbox for Matlab , 1999 .

[51]  Neng-Fa Zhou,et al.  Generative Modeling with Failure in PRISM , 2005, IJCAI.

[52]  De Raedt,et al.  Advances in Inductive Logic Programming , 1996 .

[53]  Jesse Davis,et al.  An Integrated Approach to Learning Bayesian Networks of Rules , 2005, ECML.

[54]  Stephen Muggleton,et al.  Learning Structure and Parameters of Stochastic Logic Programs , 2002, ILP.