A genome-wide association analysis of 2,622,830 individuals reveals new pathogenic pathways in gout.

Gout is a chronic disease of monosodium urate crystal deposition in the setting of hyperuricemia that typically presents with recurrent flares of acute inflammatory arthritis that occur due to innate immune response to deposited crystals. The molecular mechanism of the progression from hyperuricemia to clinical gout is poorly understood. Here we provide insights into this progression from a genetic study of 2.6 million people, including 120,282 people with gout. We detected 376 loci and 410 genetically independent signals (148 new loci in urate and gout). We identified 1,768 candidate genes with subsequent pathway analysis revealing urate metabolism, type 2 diabetes, and chromatin modification and structure as top pathways in gout. Genes located within or statistically linked to significant GWAS loci were prioitized for their potential to control the progression from hyperuricemia to gout. This identified strong candidate immune genes involved in epigenetic remodelling, cell osmolarity, and regulation of NLRP3-inflammasome activity. The genetic association signal at XDH, encoding the urate-producing enzyme xanthine oxidoreductase (XOR), co-localizes with genetic control of XDH expression, but only in the prostate. We demonstrate XOR activity and urate production in the mouse prostate, and use single-cell RNA sequence data to propose a model of urate reuptake, synthesis, and secretion by the prostate. The gout-associated loci were over-represented for genes implicated in clonal hematopoeiesis of indeterminate potential (CHIP) and Mendelian randomization analysis provided evidence for a causal role of CHIP in gout. In concert with implication of epigenomic regulators, this provides support for epigenomic remodelling as causal in gout. We provide new insights into the molecular pathogenesis of gout and identify an array of candidate genes for a role in the inflammatory process of gout.

Yu | Abhishek | Yamamoto | Helbert | Nakaoka | L. Bradbury | S. Shringarpure | T. Merriman | O. Melander | Hyon K. Choi | E. Stahl | T. Radstake | K. Giacomini | C. Hayward | V. Vitart | D. Solomon | Z. Li | Zhiqiang Li | M. Bixley | K. Saag | T. Boutin | M. Nakatochi | M. Doherty | E. Roddy | N. Dalbeth | E. Jorgenson | M. Cadzow | L. Joosten | M. Leask | J. O'Sullivan | T. Uhlig | M. Merriman | L. Stamp | Hirofumi | A. Phipps-Green | L. Stamp | T. Jansen | S. Lester | P. Richette | Changgui Li | A. Tausche | S. McCormick | S. Rednic | E. Kelley | T. Pascart | Thibaud S. Boutin | A. Abhishek | P. Robinson | J. Miner | T. Bardin | T. Crisan | A. Nakayama | T. J. Major | Y. Kawamura | T. Fadason | R. Reynolds | P. Riches | M. Andrés | T. Huizinga | Jing | Kelley | A. Nicholas | L. Jacobsson | S. Lewis | M. Doherty | O. Melander | W.-H. Wei | R. Torres | Wen-Hua Wei | L. Jacobsson | M. Janssen | K. Ichida | Toyoda | Seiko Shimizu | Tappei Takada | Matsuo | R. King | N. Sumpter | Maureen | R. Toes | J. O’Sullivan | Chaeyoung Lee | H. Matsuo | Okada | Campbell | A. So | Keitaro | O. Gaal | Sally | Nariyoshi | Laura | Deanna Brackman | Wen Wang | F. Perez Ruiz | Catherine L. Hill | Shinomiya | Yongyong Shi | J. Torres | Archie | P. McCormick | Buchanan | M. Andrés | Mariana Urquiaga | E. Eric | R. Topless | Brooke A. Maxwell | Rosa | R. Takei | Y. Shirai | A. Ji | M. Urquiaga | S. E. Lewis | B. Maxwell | M. C. Kapetonovic | R. Liu | O. Gaal | M. Smith | K. Ruth | Rachel D. King | Ruiqi Liu | Rischmueller | H. Matsuo | Joosten | Cui | F. Pérez-Ruiz | F. Lioté | Y. Shirai | T. Crişan | A. Ji | Fina | Matthew A. Brown | B. LeoA. | R. Liu | G. McCarthy | Hang-Korng Ea | Tanya J. Major | S. Ralston | Topless | Sumpter | Tayaza | Fadason | Meliha | C. Kapetanovic | Kurreeman | Blanka Stib | rková | Ken | C. RussellR. | Yukinori | Hang‐Korng Ea

[1]  T. Merriman,et al.  Genetic and Physiological Effects of Insulin-Like Growth Factor-1 (IGF-1) on Human Urate Homeostasis , 2022, Journal of the American Society of Nephrology : JASN.

[2]  M. Morris,et al.  Identification of Potential Megalin/Cubilin Substrates Using Extensive Proteomics Quantification from Kidney Megalin-Knockdown Mice , 2022, The AAPS Journal.

[3]  Y. Okada,et al.  SNP-based heritability estimates of gout and its subtypes determined by genome-wide association studies of clinically defined gout , 2022, Rheumatology.

[4]  L. Joosten,et al.  CHIP and gout: trained immunity? , 2022, Blood.

[5]  Matthew S. Lebo,et al.  The Evolution of a Large Biobank at Mass General Brigham , 2022, Journal of personalized medicine.

[6]  D. Neuberg,et al.  TET2-mutant clonal hematopoiesis and risk of gout , 2022, Blood.

[7]  Christopher D. Brown,et al.  Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease , 2022, Nature Genetics.

[8]  N. Manolios,et al.  The disproportionately large contribution of the Māori and Pacific Islander community to the healthcare burden of gout in Western Sydney , 2022, Internal medicine journal.

[9]  S. Zhao,et al.  Sodium-glucose cotransporter 1 inhibition and gout: Mendelian randomisation study. , 2022, Seminars in arthritis and rheumatism.

[10]  F. Hormozdiari,et al.  Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity , 2022, Nature Genetics.

[11]  P. Richette,et al.  POS1169 THE INFLAMMATION INDUCED BY MONOSODIUM URATE AND CALCIUM PYROPHOSPHATE CRYSTALS DEPENDS ON OSMOLARITY AND AQUAPORIN CHANNELS. , 2022, Annals of the Rheumatic Diseases.

[12]  D. Sumi,et al.  Effects of individual amino acid mutations of zinc transporter ZIP8 on manganese- and cadmium-transporting activity. , 2022, Biochemical and biophysical research communications.

[13]  Chun Jimmie Ye,et al.  Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease , 2022, Science.

[14]  Judy H. Cho,et al.  Meta-analysis fine-mapping is often miscalibrated at single-variant resolution , 2022, medRxiv.

[15]  Aino,et al.  FinnGen: Unique genetic insights from combining isolated population and national health register data , 2022, medRxiv.

[16]  A. Gaffo,et al.  Managing Gout in Women: Current Perspectives , 2022, Journal of inflammation research.

[17]  S. Larsson,et al.  Genetically predicted sex hormone levels and health outcomes: phenome-wide Mendelian randomization investigation , 2022, International journal of epidemiology.

[18]  B. Kestenbaum,et al.  Association of Clonal Hematopoiesis of Indeterminate Potential with Worse Kidney Function and Anemia in Two Cohorts of Patients with Advanced Chronic Kidney Disease , 2022, Journal of the American Society of Nephrology : JASN.

[19]  Y. Okada,et al.  A meta-analysis of genome-wide association studies using Japanese and Taiwanese has revealed novel loci associated with gout susceptibility , 2022, Human Cell.

[20]  V. Iyer,et al.  Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis , 2022, Nature Genetics.

[21]  A. Jetten,et al.  GLIS3: A Critical Transcription Factor in Islet β-Cell Generation , 2021, Cells.

[22]  Wei Zhou,et al.  Global Biobank Meta-analysis Initiative: powering genetic discovery across human diseases , 2021, medRxiv.

[23]  M. Wurfel,et al.  The Autoimmune Risk R262W Variant of the Adaptor SH2B3 Improves Survival in Sepsis. , 2021, Journal of Immunology.

[24]  S. Mahata,et al.  ANT2 drives proinflammatory macrophage activation in obesity , 2021, JCI insight.

[25]  J. Marchini,et al.  Exome sequencing and analysis of 454,787 UK Biobank participants , 2021, Nature.

[26]  D. Melzer,et al.  Statin treatment effectiveness and the SLCO1B1*5 reduced function genotype: Long‐term outcomes in women and men , 2021, medRxiv.

[27]  M. Rivas,et al.  A cross-population atlas of genetic associations for 220 human phenotypes , 2021, Nature Genetics.

[28]  K. Bailey,et al.  Critical Role of Zinc Transporter (ZIP8) in Myeloid Innate Immune Cell Function and the Host Response against Bacterial Pneumonia , 2021, The Journal of Immunology.

[29]  M. Netea,et al.  Urate-induced epigenetic modifications in myeloid cells , 2021, Arthritis Research & Therapy.

[30]  Xiao Liu,et al.  Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster. , 2021, Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids.

[31]  R. Xavier,et al.  Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease , 2021, Genome biology.

[32]  J. Manson,et al.  Supplemental Association of Clonal Hematopoiesis With Incident Heart Failure. , 2021, Journal of the American College of Cardiology.

[33]  A. Auton,et al.  Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations , 2021, Human molecular genetics.

[34]  V. S. Tanwar,et al.  lncRNA DRAIR is downregulated in diabetic monocytes and modulates the inflammatory phenotype via epigenetic mechanisms , 2021, JCI insight.

[35]  E. Calvo-Aranda,et al.  EFFICACY OF SUBCUTANEOUS TOCILIZUMAB IN A PATIENT WITH SEVERE GOUT REFRACTORY TO ANAKINRA. , 2021, Rheumatology.

[36]  Y. Okada,et al.  Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases , 2021, Cell.

[37]  C. Glass,et al.  Monosodium Urate Crystals regulate a unique JNK-dependent macrophage metabolic and inflammatory response , 2021, bioRxiv.

[38]  A. Dopazo,et al.  Clonal Hematopoiesis and Risk of Progression of Heart Failure With Reduced Left Ventricular Ejection Fraction. , 2021, Journal of the American College of Cardiology.

[39]  K. Morgan,et al.  Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK Biobank , 2021, Annals of the Rheumatic Diseases.

[40]  Ryan L. Collins,et al.  Genome-wide enhancer maps link risk variants to disease genes , 2021, Nature.

[41]  Elizabeth A. Heron,et al.  Converting single nucleotide variants between genome builds: from cautionary tale to solution , 2021, Briefings Bioinform..

[42]  A. Zeiher,et al.  Full spectrum of clonal haematopoiesis‐driver mutations in chronic heart failure and their associations with mortality , 2021, ESC heart failure.

[43]  Kathleen M. Jagodnik,et al.  Gene Set Knowledge Discovery with Enrichr , 2021, Current protocols.

[44]  J. Yracheta,et al.  Genomics data: the broken promise is to Indigenous people , 2021, Nature.

[45]  D. Martschenko,et al.  Genes do not operate in a vacuum, and neither should our research , 2021, Nature Genetics.

[46]  R. Terkeltaub,et al.  A Randomized, Phase II Study Evaluating the Efficacy and Safety of Anakinra in the Treatment of Gout Flares , 2021, Arthritis & rheumatology.

[47]  Chuangye Yan,et al.  A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols , 2021, Science.

[48]  Norio Kobayashi,et al.  FANTOM enters 20th year: expansion of transcriptomic atlases and functional annotation of non-coding RNAs , 2020, Nucleic Acids Res..

[49]  L. Joosten,et al.  The role of interleukin-1 family members in hyperuricemia and gout. , 2020, Joint bone spine.

[50]  Yadong Chen,et al.  Targeting BRD4 prevents acute gouty arthritis by regulating pyroptosis , 2020, International journal of biological sciences.

[51]  Ellen M. Schmidt,et al.  Open Targets Genetics: An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci , 2020, bioRxiv.

[52]  D. Sabatini,et al.  MFSD12 mediates the import of cysteine into melanosomes and lysosomes , 2020, Nature.

[53]  Annelot M. Dekker,et al.  Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation , 2021, Nature Genetics.

[54]  M. Netea,et al.  Immunometabolic control of trained immunity , 2020, Molecular Aspects of Medicine.

[55]  G. Collins,et al.  Prevalence, Incidence, and Years Lived With Disability Due to Gout and Its Attributable Risk Factors for 195 Countries and Territories 1990–2017: A Systematic Analysis of the Global Burden of Disease Study 2017 , 2020, Arthritis & rheumatology.

[56]  P. Visscher,et al.  Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors , 2020, Nature Communications.

[57]  M. Loda,et al.  A single-cell atlas of the mouse and human prostate reveals heterogeneity and conservation of epithelial progenitors , 2020, bioRxiv.

[58]  Y. Kamatani,et al.  Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients , 2020, Annals of the Rheumatic Diseases.

[59]  K. Migita,et al.  Uric acid-mediated inflammasome activation in IL-6 primed innate immune cells is regulated by baricitinib , 2020, Modern rheumatology.

[60]  A. Hoischen,et al.  Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout , 2020, Annals of the rheumatic diseases.

[61]  J. Borg,et al.  Tetraspanin-6 negatively regulates exosome production , 2020, Proceedings of the National Academy of Sciences.

[62]  Necessary voices , 2020, Nature Genetics.

[63]  Jie Zhou,et al.  Bromodomain‐containing protein 4 inhibition alleviates matrix degradation by enhancing autophagy and suppressing NLRP3 inflammasome activity in NP cells , 2020, Journal of cellular physiology.

[64]  L. Joosten,et al.  Urate‐induced immune programming: Consequences for gouty arthritis and hyperuricemia , 2019, Immunological reviews.

[65]  Jun Wang,et al.  Differential DNA Methylation of Networked Signaling, Transcriptional, Innate and Adaptive Immunity, and Osteoclastogenesis Genes and Pathways in Gout , 2019, Arthritis & rheumatology.

[66]  Karsten B. Sieber,et al.  Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels , 2019, Nature Genetics.

[67]  Y. Okada,et al.  Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control , 2019, bioRxiv.

[68]  Y. Kamatani,et al.  Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout , 2019, Annals of the rheumatic diseases.

[69]  E. Zeggini,et al.  Genomics of disease risk in globally diverse populations , 2019, Nature Reviews Genetics.

[70]  Hyon K. Choi,et al.  Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007–2016 , 2019, Arthritis & rheumatology.

[71]  Yamil D. Mahmoud,et al.  Targeting TMEM176B Enhances Antitumor Immunity and Augments the Efficacy of Immune Checkpoint Blockers by Unleashing Inflammasome Activation , 2019, Cancer cell.

[72]  S. Xiong,et al.  POM121 inhibits the macrophage inflammatory response by impacting NF‐&kgr;B P65 nuclear accumulation , 2019, Experimental cell research.

[73]  M. Kanai,et al.  Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals , 2019, Communications Biology.

[74]  G. Homanics,et al.  Hepatocyte-Specific Ablation or Whole-Body Inhibition of Xanthine Oxidoreductase in Mice Corrects Obesity-Induced Systemic Hyperuricemia Without Improving Metabolic Abnormalities , 2019, Diabetes.

[75]  Yukinori Okada,et al.  GREP: genome for REPositioning drugs , 2019, Bioinform..

[76]  Kevin C. Wang,et al.  Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments , 2018, Nature Genetics.

[77]  Y. Okada,et al.  Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis , 2018, Proceedings of the National Academy of Sciences.

[78]  Helen E. Parkinson,et al.  The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 , 2018, Nucleic Acids Res..

[79]  U. Laforenza,et al.  Human adipose glycerol flux is regulated by a pH gate in AQP10 , 2018, Nature Communications.

[80]  Yingliang Wu,et al.  Cholesterol Homeostatic Regulator SCAP‐SREBP2 Integrates NLRP3 Inflammasome Activation and Cholesterol Biosynthetic Signaling in Macrophages , 2018, Immunity.

[81]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[82]  Venkat S. Malladi,et al.  A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra , 2018, bioRxiv.

[83]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[84]  R. Sridharan,et al.  The role of α-ketoglutarate–dependent proteins in pluripotency acquisition and maintenance , 2018, The Journal of Biological Chemistry.

[85]  Christopher D. Brown,et al.  Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease , 2018, Nature Medicine.

[86]  O. Melander,et al.  Altered Asparagine and Glutamate Homeostasis Precede Coronary Artery Disease and Type 2 Diabetes , 2018, The Journal of clinical endocrinology and metabolism.

[87]  T. Merriman,et al.  An update on the genetics of hyperuricaemia and gout , 2018, Nature Reviews Rheumatology.

[88]  Valeriia Haberland,et al.  The MR-Base platform supports systematic causal inference across the human phenome , 2018, eLife.

[89]  P. Calder,et al.  Polyunsaturated Fatty Acid Biosynthesis Involving Δ8 Desaturation and Differential DNA Methylation of FADS2 Regulates Proliferation of Human Peripheral Blood Mononuclear Cells , 2018, Front. Immunol..

[90]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[91]  D. Goukassian,et al.  Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through a Mechanism Involving the IL-1β/NLRP3 Inflammasome. , 2018, Journal of the American College of Cardiology.

[92]  T. Merriman,et al.  Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis , 2018, Annals of the rheumatic diseases.

[93]  Daniel E. Miller,et al.  Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity , 2018, Nature Genetics.

[94]  Dongli Tian,et al.  Effects of sodium‐glucose co‐transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta‐analysis of randomized controlled trials , 2018, Diabetes, obesity & metabolism.

[95]  R. Horst,et al.  Metabolic Induction of Trained Immunity through the Mevalonate Pathway , 2018, Cell.

[96]  Kathryn S. Burch,et al.  Leveraging polygenic functional enrichment to improve GWAS power , 2017, bioRxiv.

[97]  Justin M. O'Sullivan,et al.  Physical Interactions and Expression Quantitative Traits Loci Identify Regulatory Connections for Obesity and Type 2 Diabetes Associated SNPs , 2017, Front. Genet..

[98]  Wen Zhang,et al.  A Bayesian Framework for Multiple Trait Colocalization from Summary Association Statistics , 2017, bioRxiv.

[99]  T. Merriman,et al.  Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank , 2017, Arthritis Research & Therapy.

[100]  L. Joosten,et al.  ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches , 2017, Pharmacogenomics and personalized medicine.

[101]  Saumya Das,et al.  DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress , 2017, Science Signaling.

[102]  K. Kang,et al.  IK acts as an immunoregulator of inflammatory arthritis by suppressing TH17 cell differentiation and macrophage activation , 2017, Scientific Reports.

[103]  W. Taylor,et al.  Survey Definitions of Gout for Epidemiologic Studies: Comparison With Crystal Identification as the Gold Standard , 2016, Arthritis care & research.

[104]  Y. Kamatani,et al.  GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes , 2016, Annals of the rheumatic diseases.

[105]  William J. Astle,et al.  Allelic Landscape of Human Blood Cell Trait Variation and Links , 2016 .

[106]  Richard A. Notebaart,et al.  Host and Environmental Factors Influencing Individual Human Cytokine Responses , 2016, Cell.

[107]  L. Liang,et al.  A comprehensive survey of genetic variation in 20 , 691 subjects from four large cohorts 1 , 2016 .

[108]  A. Tall,et al.  LNK/SH2B3 Loss of Function Promotes Atherosclerosis and Thrombosis. , 2016, Circulation research.

[109]  R. Xavier,et al.  Trained immunity: A program of innate immune memory in health and disease , 2016, Science.

[110]  M. Pirinen,et al.  Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA , 2016, Nature Communications.

[111]  Pak C Sham,et al.  SNPTracker: A Swift Tool for Comprehensive Tracking and Unifying dbSNP rs IDs and Genomic Coordinates of Massive Sequence Variants , 2015, G3: Genes, Genomes, Genetics.

[112]  Mitchell J. Machiela,et al.  LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants , 2015, Bioinform..

[113]  M. Doherty,et al.  Global epidemiology of gout: prevalence, incidence and risk factors , 2015, Nature Reviews Rheumatology.

[114]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[115]  Matti Pirinen,et al.  FINEMAP: efficient variable selection using summary data from genome-wide association studies , 2015, bioRxiv.

[116]  Tom R. Gaunt,et al.  The UK10K project identifies rare variants in health and disease , 2016 .

[117]  A. Ogdie,et al.  2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative , 2015, Annals of the rheumatic diseases.

[118]  A. Ogdie,et al.  2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative , 2015, Annals of the rheumatic diseases.

[119]  Hiroki Inoue,et al.  γ-SNAP stimulates disassembly of endosomal SNARE complexes and regulates endocytic trafficking pathways , 2015, Journal of Cell Science.

[120]  Teresa A. Webster,et al.  Genotyping Informatics and Quality Control for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort , 2015, Genetics.

[121]  Tian Liu,et al.  Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese , 2015, Nature Communications.

[122]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[123]  Hirotaka Matsuo,et al.  Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes , 2015, Annals of the rheumatic diseases.

[124]  G. Gamble,et al.  Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study , 2015, Annals of the rheumatic diseases.

[125]  S. Legrand-Poels,et al.  Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. , 2014, Biochemical pharmacology.

[126]  E. Eskin,et al.  Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-Mapping Studies , 2014, PLoS genetics.

[127]  K. Pavelka,et al.  Complex Analysis of Urate Transporters SLC2A9, SLC22A12 and Functional Characterization of Non-Synonymous Allelic Variants of GLUT9 in the Czech Population: No Evidence of Effect on Hyperuricemia and Gout , 2014, PloS one.

[128]  M. Roudier,et al.  Prevalence of birefringent crystals in cardiac and prostatic tissues, an observational study , 2014, BMJ Open.

[129]  Andres Metspalu,et al.  Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population , 2014, PLoS genetics.

[130]  T. Harrer,et al.  Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines , 2014, Nature Medicine.

[131]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[132]  Tanya M. Teslovich,et al.  Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014, Nature Genetics.

[133]  J. Masumoto,et al.  Tocilizumab improved clinical symptoms of a patient with systemic tophaceous gout who had symmetric polyarthritis and fever: An alternative treatment by blockade of interleukin-6 signaling , 2014, SAGE open medical case reports.

[134]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[135]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[136]  Y. Teo,et al.  Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. , 2013, Human molecular genetics.

[137]  T. Merriman,et al.  Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load , 2013, Annals of the rheumatic diseases.

[138]  Fabian J Theis,et al.  Genome-wide association analyses identify 18 new loci associated with serum urate concentrations , 2012, Nature Genetics.

[139]  J. Borén,et al.  Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. , 2012, Journal of hepatology.

[140]  Tom R. Gaunt,et al.  Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models , 2012, Human mutation.

[141]  G. López-Castejón,et al.  Cell volume regulation modulates NLRP3 inflammasome activation. , 2012, Immunity.

[142]  S. Bates,et al.  Histone deacetylase inhibitors influence chemotherapy transport by modulating expression and trafficking of a common polymorphic variant of the ABCG2 efflux transporter. , 2012, Cancer research.

[143]  L. Joosten,et al.  Enhanced interleukin-1β production of PBMCs from patients with gout after stimulation with Toll-like receptor-2 ligands and urate crystals , 2012, Arthritis Research & Therapy.

[144]  Hyon K. Choi,et al.  Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. , 2012, The American journal of medicine.

[145]  Chaeyoung Lee,et al.  Genetic architecture for susceptibility to gout in the KARE cohort study , 2012, Journal of Human Genetics.

[146]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[147]  A. Morris,et al.  Transethnic Meta-Analysis of Genomewide Association Studies , 2011, Genetic epidemiology.

[148]  H. Stefánsson,et al.  Identification of low-frequency variants associated with gout and serum uric acid levels , 2011, Nature Genetics.

[149]  F. Collins,et al.  Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk , 2011, Diabetologia.

[150]  Xavier Robin,et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.

[151]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[152]  D. Hernandez,et al.  Multiple Genetic Loci Influence Serum Urate Levels and Their Relationship With Gout and Cardiovascular Disease Risk Factors , 2010, Circulation. Cardiovascular genetics.

[153]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[154]  M. Hiasa,et al.  Type 1 Sodium-dependent Phosphate Transporter (SLC17A1 Protein) Is a Cl−-dependent Urate Exporter* , 2010, The Journal of Biological Chemistry.

[155]  Brian T. Naughton,et al.  Web-Based, Participant-Driven Studies Yield Novel Genetic Associations for Common Traits , 2010, PLoS genetics.

[156]  Nicola L. Beer,et al.  The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver , 2009, Human molecular genetics.

[157]  E. Boerwinkle,et al.  Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout , 2009, Proceedings of the National Academy of Sciences.

[158]  Christian Gieger,et al.  Meta-Analysis of 28,141 Individuals Identifies Common Variants within Five New Loci That Influence Uric Acid Concentrations , 2009, PLoS genetics.

[159]  P. Dasgupta,et al.  Biochemical Analysis of Human Seminal Plasma II. Protein, Non‐Protein Nitrogen, Urea, Uric Acid and Creatine * , 2009, Andrologia.

[160]  Hong-ye Zhang,et al.  [Determination of uric acid in seminal plasma and correlation between seminal uric acid and semen parameters]. , 2007, Zhonghua nan ke xue = National journal of andrology.

[161]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[162]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[163]  Zhimin Xiang,et al.  Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. , 2006, Biochemistry.

[164]  F. Martinon,et al.  Gout-associated uric acid crystals activate the NALP3 inflammasome , 2006, Nature.

[165]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[166]  Hirotaka Matsuo,et al.  Molecular identification of a renal urate–anion exchanger that regulates blood urate levels , 2002, Nature.

[167]  W F Walsh,et al.  Neonatal pulmonary hypertension--urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. , 2001, The New England journal of medicine.

[168]  T. Takeshita,et al.  The contribution of polymorphism in the alcohol dehydrogenase β subunit to alcohol sensitivity in a Japanese population , 1996, Human Genetics.

[169]  K. Takahashi,et al.  Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. , 1994, The Journal of biological chemistry.

[170]  R. Glynn,et al.  Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. , 1987, The American journal of medicine.

[171]  D. Mccarty,et al.  Preliminary criteria for the classification of the acute arthritis of primary gout. , 1977, Arthritis and rheumatism.

[172]  D. Fernández-Ávila,et al.  Tocilizumab in a patient with tophaceous gout resistant to treatment. , 2013, Reumatologia clinica.

[173]  JifengZhang,et al.  Krüppel-Like Factor-11, a Transcription Factor Involved in Diabetes Mellitus, Suppresses Endothelial Cell Activation via the Nuclear Factor-κB Signaling Pathway , 2012 .

[174]  A. Taniguchi,et al.  Functional Analysis of Human Sodium-Phosphate Transporter 4 (NPT4/SLC17A3) Polymorphisms. , 2011, Journal of pharmacological sciences.

[175]  N. Kamatani,et al.  Analysis of the genotypes for aldehyde dehydrogenase 2 in Japanese patients with primary gout. , 1994, Advances in experimental medicine and biology.