Error analysis for the approximation of axisymmetric Willmore flow by C1-finite elements

We consider the Willmore flow of axially symmetric surfaces subject to Dirichlet boundary conditions. The corresponding evolution is described by a nonlinear parabolic PDE of fourth order for the radius function. A suitable weak form of the equation, which is based on the first variation of the Willmore energy, leads to a semidiscrete scheme, in which we employ piecewise cubic C1-finite elements for the one-dimensional approximation in space. We prove optimal error bounds in Sobolev norms for the solution and its time derivative and present numerical test examples.

[1]  D. M,et al.  A level set formulation for Willmore flow , 2004 .

[2]  Klaus Deckelnick,et al.  Classical solutions to the Dirichlet problem for Willmore surfaces of revolution , 2008 .

[3]  Uwe F. Mayer,et al.  A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow , 2002 .

[4]  Gerhard Dziuk,et al.  Error analysis of a finite element method for the Willmore flow of graphs , 2006 .

[5]  I. Holopainen Riemannian Geometry , 1927, Nature.

[6]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[7]  Ricardo H. Nochetto,et al.  Parametric FEM for geometric biomembranes , 2010, J. Comput. Phys..

[8]  Martin Rumpf,et al.  Two Step Time Discretization of Willmore Flow , 2009, IMA Conference on the Mathematics of Surfaces.

[9]  Raluca E. Rusu An algorithm for the elastic flow of surfaces , 2005 .

[10]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[11]  Gerhard Dziuk,et al.  Computational parametric Willmore flow , 2008, Numerische Mathematik.

[12]  M. Droske,et al.  A level set formulation for Willmore flow , 2004 .

[13]  E. Kuwert,et al.  The Willmore Flow with Small Initial Energy , 2001 .

[14]  K. Deckelnick,et al.  A Navier boundary value problem for Willmore surfaces of revolution , 2009 .

[15]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[16]  Reiner Schätzle,et al.  Removability of point singularities of Willmore surfaces , 2004 .

[17]  H. Grunau,et al.  Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data , 2010 .

[18]  John Sullivan,et al.  Minimizing the Squared Mean Curvature Integral for Surfaces in Space Forms , 1992, Exp. Math..

[19]  N. Zhitarashu,et al.  Parabolic Boundary Value Problems , 1999 .

[20]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[21]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[22]  Martin Rumpf,et al.  A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..

[23]  Harald Garcke,et al.  Parametric Approximation of Willmore Flow and Related Geometric Evolution Equations , 2008, SIAM J. Sci. Comput..