Enhanced high-temperature strength of HfB2–SiC composite up to 1600°C

[1]  G. Hilmas,et al.  Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C , 2015 .

[2]  G. Hilmas,et al.  Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air , 2013 .

[3]  William E Lee,et al.  Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering , 2013 .

[4]  M. Nygren,et al.  On the enhancement of the spark-plasma sintering kinetics of ZrB2–SiC powder mixtures subjected to high-energy co-ball-milling , 2013 .

[5]  Y. Sakka,et al.  Strong ZrB2–SiC–WC Ceramics at 1600°C , 2012 .

[6]  G. Hilmas,et al.  Oxidation of ultra-high temperature transition metal diboride ceramics , 2012 .

[7]  M. Nygren,et al.  On the crystallite size refinement of ZrB2 by high-energy ball-milling in the presence of SiC , 2011 .

[8]  G. Hilmas,et al.  Stress measurements in ZrB2–SiC composites using Raman spectroscopy and neutron diffraction , 2010 .

[9]  Thomas H. Squire,et al.  Material property requirements for analysis and design of UHTC components in hypersonic applications , 2010 .

[10]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[11]  S. Guo,et al.  Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles , 2008 .

[12]  Raffaele Savino,et al.  Aerothermodynamic Study of Ultrahigh-Temperature Ceramic Winglet for Atmospheric Reentry Test , 2008 .

[13]  G. Hilmas,et al.  Thermophysical Properties of ZrB2-Based Ceramics , 2008 .

[14]  N. Padture,et al.  Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids , 2007 .

[15]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[16]  G. Hilmas,et al.  Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC , 2007 .

[17]  G. Hilmas,et al.  Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics , 2007 .

[18]  E. Opila,et al.  UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications , 2007 .

[19]  D. Sciti,et al.  Fast Densification of Ultra‐High‐Temperature Ceramics by Spark Plasma Sintering , 2006 .

[20]  F. Monteverde Progress in the fabrication of ultra-high-temperature ceramics: “in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2–SiC composite , 2005 .

[21]  A. Bellosi,et al.  Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates , 2005 .

[22]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[23]  Alida Bellosi,et al.  Microstructure and Properties of an HfB2‐SiC Composite for Ultra High Temperature Applications , 2004 .

[24]  W. Pompe,et al.  Internal Stresses in Silicon Nitride and Their Influence on Mechanical Behavior , 1994 .

[25]  K. Niihara New Design Concept of Structural Ceramics , 1991 .

[26]  K. Niihara New design concept of structural ceramics―ceramic nanocomposites , 1991 .

[27]  D. Kalish,et al.  Strength, Fracture Mode, and Thermal Stress Resistance of HfB2 and ZrB2 , 1969 .