Theoretical Investigation of Submerged Inlets at Low Speeds

The general characteristics of the flow field in a submerged air inlet are investigated by theoretical, wind-tunnel, and visual-flow studies. Equations are developed for calculating the laminar and turbulent boundary-layer growth along the ramp floor for parallel, divergent, and convergent ramp walls, and a general equation is derived relating the boundary-layer pressure losses to the boundary-layer thickness. It is demonstrated that the growth of the boundary layer on the floor of the divergent-ramp inlet is retarded and that a vortex pair is generated in such an inlet. Functional relationships are established between the pressure losses in the vortices and the geometry of the inlet. A general discussion of the boundary layer and vortex formations is included, in which variations of the various losses and of the incremental external drag with mass-flow ratio are considered. Effects of compressibility are also discussed.