Exceptional methane uptake in a monolithic metal-organic framework obtained through a sol-gel process

Adsorption & Advanced Materials (AAM) Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom. Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, Parks Road, OX1 3PJ, University of Oxford, United Kingdom Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, Ctra. San Vicente-Alicante s/n, E-03080 Alicante, Spain. d Electron Microscopy Group, Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom.

[1]  Peyman Z. Moghadam,et al.  Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future , 2017 .

[2]  H. Furukawa,et al.  High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. , 2016, Journal of the American Chemical Society.

[3]  Bartolomeo Civalleri,et al.  Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework , 2016 .

[4]  Omar M. Yaghi,et al.  The role of metal–organic frameworks in a carbon-neutral energy cycle , 2016, Nature Energy.

[5]  Craig M. Brown,et al.  Methane storage in flexible metal–organic frameworks with intrinsic thermal management , 2015, Nature.

[6]  A. Emwas,et al.  MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage , 2015, Journal of the American Chemical Society.

[7]  Diego A. Gómez-Gualdrón,et al.  The materials genome in action: identifying the performance limits for methane storage , 2015 .

[8]  I. Díaz,et al.  Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources , 2015 .

[9]  D. Fairen-jimenez,et al.  Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity , 2015 .

[10]  J. Silvestre-Albero,et al.  High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position? , 2015 .

[11]  Maciej Haranczyk,et al.  Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals , 2014 .

[12]  Diego A. Gómez-Gualdrón,et al.  Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials , 2014 .

[13]  H. Furukawa,et al.  High Methane Storage Capacity in Aluminum Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[14]  Chih-Hung Chang,et al.  High-rate synthesis of Cu-BTC metal-organic frameworks. , 2013, Chemical communications.

[15]  J. Hupp,et al.  Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. , 2013, Journal of the American Chemical Society.

[16]  C. Su,et al.  A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels , 2013, Nature Communications.

[17]  Hong-Cai Zhou,et al.  Methane storage in advanced porous materials. , 2012, Chemical Society reviews.

[18]  Yamil J. Colón,et al.  Understanding excess uptake maxima for hydrogen adsorption isotherms in frameworks with rht topology. , 2012, Chemical communications.

[19]  O. Kraft,et al.  Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films , 2012 .

[20]  A. Hill,et al.  Methane storage in metal organic frameworks , 2012 .

[21]  Stefan Kaskel,et al.  Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range , 2012 .

[22]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[23]  Z. Lai,et al.  Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. , 2011, Chemical communications.

[24]  R. Krishna,et al.  Methane storage mechanism in the metal-organic framework Cu3(btc)2: An in situ neutron diffraction study , 2010 .

[25]  Satish K. Nune,et al.  Synthesis and properties of nano zeolitic imidazolate frameworks. , 2010, Chemical communications.

[26]  A. Cheetham,et al.  Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks , 2010, Proceedings of the National Academy of Sciences.

[27]  A. Cheetham,et al.  Anisotropic mechanical properties of polymorphic hybrid inorganic―organic framework materials with different dimensionalities , 2009 .

[28]  C. Serre,et al.  Colloidal Route for Preparing Optical Thin Films of Nanoporous Metal–Organic Frameworks , 2009 .

[29]  A. Feldhoff,et al.  Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework , 2009 .

[30]  Mohammad Hasan Abbasi,et al.  Silica aerogel; synthesis, properties and characterization , 2008 .

[31]  D. Fairen-jimenez,et al.  Inter- and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[32]  V. John,et al.  Nucleation and growth characteristics of a binary low-mass organogel. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[33]  D. Djurado,et al.  Surface area and microporosity of carbon aerogels from gas adsorption and small- and wide-angle X-ray scattering measurements. , 2006, The journal of physical chemistry. B.

[34]  D. Tabor Indentation hardness: Fifty years on a personal view , 1996 .

[35]  R. Pekala,et al.  Organic aerogels from the polycondensation of resorcinol with formaldehyde , 1989 .

[36]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .

[37]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .