Dynamic Load Estimation for Heavy Trucks on Bridge Structures

As part of a system for structural health monitoring, it is required to determine the spatial and temporal distributions of vertical loads arising from heavy trucks driven on flexible bridge structures. An instrumented truck is used to generate the input loads and estimate the load time histories. The truck can carry a range of sensors; however direct measurement of vertical tire loads between the tires and the structure is not considered realistic. The dynamic loads are to be estimated from the sensor outputs. These are affected by both truck and bridge dynamics and these must be accounted for within the load estimation process. Estimation may be susceptible to many factors including static mass distribution, vehicle longitudinal motion, variations in lateral position on the bridge, as well as any surface unevenness. The focus of this paper is on using high fidelity simulation models to develop appropriate methodologies for load estimation which optimize the use of sensors on the truck. The estimation methods are evaluated in the context of any loss of accuracy in the predicted bridge response and in particular the coherency between inputs and outputs. It is proposed that using only static tire load data, GPS satellite data, string-potentiometers and accelerometer measurements, a robust measurement system can be constructed. The goal is to use near real-time processing of truck sensor data so that dynamic truck loads are available; when combined with data from separate bridge-mounted sensors, the structural performance of the structure can be evaluated. © 2013 SAE International.

[1]  Tospol Pinkaew,et al.  Identification of vehicle axle loads from bridge responses using updated static component technique , 2006 .

[2]  S. S. Law,et al.  PRACTICAL ASPECTS IN MOVING LOAD IDENTIFICATION , 2002 .

[3]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[4]  Lu Deng,et al.  Identification of Dynamic Vehicular Axle Loads: Theory and Simulations , 2010 .

[5]  Amir A. Mosavi,et al.  Nonlinear modeling of the vehicle/structure interaction on a skewed highway bridge using an iterative uncoupled approach , 2012, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  Hocine Imine,et al.  Heavy duty vehicle tyre forces estimation using variable gain sliding mode observer , 2013 .

[7]  Ari J. Tuononen,et al.  Optical position detection to measure tyre carcass deflections , 2008 .

[8]  Ari J. Tuononen,et al.  On-board estimation of dynamic tyre forces from optically measured tyre carcass deflections , 2009 .

[9]  Xinqun Zhu,et al.  IDENTIFICATION OF VEHICLE AXLE LOADS FROM BRIDGE DYNAMIC RESPONSES , 2000 .

[10]  S. S. Law,et al.  Dynamic axle and wheel loads identification: laboratory studies , 2003 .

[11]  L. Meirovitch,et al.  Fundamentals of Vibrations , 2000 .

[12]  David P. Thambiratnam,et al.  Development of an analytical model for treating bridge-vehicle interaction , 1998 .

[13]  L. Fridman,et al.  Variable gain sliding mode observer for heavy duty vehicle tyre forces estimation , 2010, 2010 11th International Workshop on Variable Structure Systems (VSS).

[14]  Laura Ryan Ray,et al.  Nonlinear state and tire force estimation for advanced vehicle control , 1995, IEEE Trans. Control. Syst. Technol..

[15]  V. Koivunen,et al.  On the estimation of state matrix and noise statistics in state-space models , 2002, Proceedings IEEE 56th Vehicular Technology Conference.