Existence, uniqueness and continuity of trapezoidal approximations of fuzzy numbers under a general condition

Abstract The main aim of this paper is to characterize the set of real parameters associated to a fuzzy number, represented in a general form which include the most important characteristics, with the following property: for any given fuzzy number there exists at least a trapezoidal fuzzy number which preserves a fixed parameter. The uniqueness of the nearest trapezoidal fuzzy number with this property is proved, the average Euclidean distance being considered. As an important property, each resulting trapezoidal approximation operator is continuous. The main results are illustrated by examples.

[1]  Cengiz Kahraman,et al.  Development of fuzzy process accuracy index for decision making problems , 2010, Inf. Sci..

[2]  Saeid Abbasbandy,et al.  The nearest trapezoidal fuzzy number to a fuzzy quantity , 2004, Appl. Math. Comput..

[3]  Saeid Abbasbandy,et al.  Weighted trapezoidal approximation-preserving cores of a fuzzy number , 2010, Comput. Math. Appl..

[4]  Amit Kumar,et al.  A new method for solving fuzzy transportation problems using ranking function , 2011 .

[5]  Przemysław Grzegorzewski,et al.  Algorithms for Trapezoidal Approximations of Fuzzy Numbers Preserving the Expected Interval , 2010 .

[6]  Didier Dubois,et al.  Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets , 2012, Fuzzy Sets Syst..

[7]  Adrian I. Ban,et al.  Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval , 2008, Fuzzy Sets Syst..

[8]  Didier Dubois,et al.  Gradual elements in a fuzzy set , 2008, Soft Comput..

[9]  Adrian I. Ban Triangular and parametric approximations of fuzzy numbers - inadvertences and corrections , 2009, Fuzzy Sets Syst..

[10]  Wolfgang Hauke Fuzzy Multiple Attribute Decision Making (Fuzzy-MADM) , 1998 .

[11]  M. Amparo Vila,et al.  On a canonical representation of fuzzy numbers , 1998, Fuzzy Sets Syst..

[12]  Saeid Abbasbandy,et al.  The nearest approximation of a fuzzy quantity in parametric form , 2006, Appl. Math. Comput..

[13]  Chi-Tsuen Yeh Trapezoidal and triangular approximations preserving the expected interval , 2008, Fuzzy Sets Syst..

[14]  Ching-Hsue Cheng,et al.  A new approach for ranking fuzzy numbers by distance method , 1998, Fuzzy Sets Syst..

[15]  Chi-Tsuen Yeh Weighted semi-trapezoidal approximations of fuzzy numbers , 2011, Fuzzy Sets Syst..

[16]  Qi Yue,et al.  Triangular approximation preserving the centroid of fuzzy numbers , 2012, Int. J. Comput. Math..

[17]  Przemyslaw Grzegorzewski,et al.  Nearest interval approximation of a fuzzy number , 2002, Fuzzy Sets Syst..

[18]  Lucian C. Coroianu,et al.  Discontinuity of the trapezoidal fuzzy number-valued operators preserving core , 2011, Comput. Math. Appl..

[19]  Chi-Tsuen Yeh,et al.  On improving trapezoidal and triangular approximations of fuzzy numbers , 2008, Int. J. Approx. Reason..

[20]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[21]  T. Vijayan,et al.  Inventory models with a mixture of backorders and lost sales under fuzzy cost , 2008, Eur. J. Oper. Res..

[22]  Mohamed Shenify,et al.  The Expected Value of a Fuzzy Number , 2015 .

[23]  Sinem Peker,et al.  On the nearest parametric approximation of a fuzzy number , 2008, Fuzzy Sets Syst..

[24]  Saeid Abbasbandy,et al.  The nearest trapezoidal form of a generalized left right fuzzy number , 2006, Int. J. Approx. Reason..

[25]  Przemyslaw Grzegorzewski,et al.  Trapezoidal approximations of fuzzy numbers - revisited , 2007, Fuzzy Sets Syst..

[26]  Mohamad Y. Jaber,et al.  An inventory model with backorders with fuzzy parameters and decision variables , 2010, Int. J. Approx. Reason..

[27]  Adrian I. Ban Remarks and corrections to the triangular approximations of fuzzy numbers using α-weighted valuations , 2011, Soft Comput..

[28]  Przemyslaw Grzegorzewski,et al.  Metrics and orders in space of fuzzy numbers , 1998, Fuzzy Sets Syst..

[29]  Przemyslaw Grzegorzewski Trapezoidal approximations of fuzzy numbers preserving the expected interval - Algorithms and properties , 2008, Fuzzy Sets Syst..

[30]  Chi-Tsuen Yeh Weighted trapezoidal and triangular approximations of fuzzy numbers , 2009, Fuzzy Sets Syst..

[31]  Lucian C. Coroianu,et al.  Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity , 2012, Int. J. Approx. Reason..

[32]  Stefan Chanas,et al.  On the interval approximation of a fuzzy number , 2001, Fuzzy Sets Syst..

[33]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[34]  B. Vahdani,et al.  Two novel FMCDM methods for alternative-fuel buses selection , 2011 .

[35]  Tofigh Allahviranloo,et al.  Note on "Trapezoidal approximation of fuzzy numbers" , 2007, Fuzzy Sets Syst..

[36]  Przemyslaw Grzegorzewski,et al.  Trapezoidal approximations of fuzzy numbers , 2003, Fuzzy Sets Syst..

[37]  Tofigh Allahviranloo,et al.  An approach for ranking of fuzzy numbers , 2012, Expert Syst. Appl..

[38]  Chi-Tsuen Yeh A note on trapezoidal approximations of fuzzy numbers , 2007, Fuzzy Sets Syst..

[39]  Lucian C. Coroianu,et al.  Continuity and Additivity of the Trapezoidal Approximation Preserving the Expected Interval Operator , 2009, IFSA/EUSFLAT Conf..

[40]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.

[41]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[42]  T. Chu,et al.  Ranking fuzzy numbers with an area between the centroid point and original point , 2002 .

[43]  A. Ebrahimnejad Some new results in linear programs with trapezoidal fuzzy numbers: Finite convergence of the Ganesan and Veeramani’s method and a fuzzy revised simplex method , 2011 .

[44]  T. Vijayan,et al.  Fuzzy economic order time models with random demand , 2009, Int. J. Approx. Reason..

[45]  Rui-Sheng Wang,et al.  Maximum cut in fuzzy nature: Models and algorithms , 2010, J. Comput. Appl. Math..

[46]  Saeid Abbasbandy,et al.  A new approach for ranking of trapezoidal fuzzy numbers , 2009, Comput. Math. Appl..

[47]  Wenyi Zeng,et al.  Weighted triangular approximation of fuzzy numbers , 2007, Int. J. Approx. Reason..

[48]  Didier Dubois,et al.  Gradual Numbers and Their Application to Fuzzy Interval Analysis , 2008, IEEE Transactions on Fuzzy Systems.

[49]  Adrian I. Ban On the nearest parametric approximation of a fuzzy number - Revisited , 2009, Fuzzy Sets Syst..

[50]  Ali Ebrahimnejad,et al.  A Primal-Dual Simplex Algorithm for Solving Linear Programming Problems with Symmetric Trapezoidal Fuzzy Numbers , 2011 .

[51]  Gin-Shuh Liang,et al.  The optimum output quantity of a duopoly market under a fuzzy decision environment , 2008, Comput. Math. Appl..

[52]  Lucian Coroianu Lipschitz functions and fuzzy number approximations , 2012, Fuzzy Sets Syst..

[53]  W. Rudin Real and complex analysis , 1968 .

[54]  Lucian C. Coroianu,et al.  Approximations of fuzzy numbers by trapezoidal fuzzy numbers preserving the ambiguity and value , 2011, Comput. Math. Appl..

[55]  Didier Dubois,et al.  Possibility and Gradual Number Approaches to Ranking Methods for Random Fuzzy Intervals , 2012, IPMU.