Stern's Diatomic Sequence 0,1,1,2,1,3,2,3,1,4,…
暂无分享,去创建一个
[1] S. Vajda. Fibonacci and Lucas Numbers and the Golden Section , 1989 .
[2] M. Stern. Ueber eine zahlentheoretische Funktion. , 1858 .
[3] E. Kummer. Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. , 1852 .
[4] L. Carlitz. A problem in partitions related to the Stirling numbers , 1964 .
[5] Stefan Erickson,et al. Apollonian Circle Packings , 2022 .
[6] Marjorie Bicknell-Johnson,et al. The Fibonacci Diatomic Array Applied to Fibonacci Representations , 2004 .
[7] Sam Northshield,et al. Sums across Pascal's triangle modulo 2 , 2010 .
[8] Herbert S. Wilf,et al. Recounting the Rationals , 2000, Am. Math. Mon..
[9] Thomas Koshy,et al. Fibonacci and Lucas Numbers with Applications: Koshy/Fibonacci , 2001 .
[10] C. L. Mallows,et al. Apollonian circle packings:number theory , 2000 .
[11] Jeffrey Shallit,et al. The Ring of k-Regular Sequences , 1990, Theor. Comput. Sci..
[12] Jeffrey Shallit,et al. Formal languages and number theory , 2000, Unusual Applications of Number Theory.
[13] Edsger W. Dijkstra,et al. Selected Writings on Computing: A personal Perspective , 1982, Texts and Monographs in Computer Science.
[14] E. Kummer,et al. Ueber die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. , 1852 .
[15] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[16] I. Urbiha. Some properties of a function studied by De Rham, Carlitz and Dijkstra and its relation to the (Eisenstein-)Stern's diatomic sequence , 2001 .
[17] Jeffrey Shallit,et al. The ring of k-regular sequences, II , 2003, Theor. Comput. Sci..
[18] Thomas Koshy,et al. Fibonacci and Lucas Numbers With Applications , 2018 .
[19] J. Conway. On Numbers and Games , 1976 .
[20] Douglas Lind,et al. An extension of Stern’s diatomic series , 1969 .
[21] J. Paradís,et al. The Derivative of Minkowski's ?(x) Function , 2001 .
[22] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[23] V. Hoggatt. Fibonacci and Lucas Numbers , 2020, Mathematics of Harmony as a New Interdisciplinary Direction and “Golden” Paradigm of Modern Science.
[24] Heiko Harborth. NUMBER OF ODD BINOMIAL COEFFICIENTS , 1977 .