A structured pseudospectral method for $$\mathcal {H}_\infty $$H∞-norm computation of large-scale descriptor systems

In this paper, we discuss the problem of computing the $${\mathcal {H}}_\infty $$H∞-norm of transfer functions associated to large-scale descriptor systems. We exploit the relationship between the $${\mathcal {H}}_\infty $$H∞-norm and the structured complex stability radius of a corresponding matrix pencil. To compute the structured stability radius we consider so-called structured pseudospectra. Namely, we have to find the pseudospectrum touching the imaginary axis. Therefore, we set up an iteration over the real part of the rightmost pseudoeigenvalue. For that, we use a new fast iterative scheme which is based on certain rank-1 perturbations of a matrix pencil. Finally, we analyze the performance of our algorithm by using real-world examples. In particular we compare our method with different other algorithms including a recently and independently derived method from Guglielmi, Gürbüzbalaban and Overton.

[1]  D. Hinrichsen,et al.  Stability radii of linear systems , 1986 .

[2]  D. Hinrichsen,et al.  Stability radius for structured perturbations and the algebraic Riccati equation , 1986 .

[3]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[4]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[5]  Stephen P. Boyd,et al.  A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..

[6]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[7]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[8]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[9]  D. Hinrichsen,et al.  Real and Complex Stability Radii: A Survey , 1990 .

[10]  Nancy Nichols,et al.  On the stability radius of a generalized state-space system , 1993 .

[11]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[12]  Paul Van Dooren,et al.  A collection of benchmark examples for model reduction of linear time invariant dynamical systems. , 2002 .

[13]  Peter Benner,et al.  Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..

[14]  A. Lewis,et al.  Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .

[15]  P. Dooren,et al.  The H-infinity norm calculation for large sparse systems , 2004 .

[16]  M. Overton,et al.  On computing the complex passivity radius , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[17]  Volker Mehrmann,et al.  Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form , 2005 .

[18]  F. Leibfritz COMPleib: COnstrained Matrix–optimization Problem library – a collection of test examples for nonlinear semidefinite programs, control system design and related problems , 2006 .

[19]  N. Martins,et al.  Efficient computation of transfer function dominant poles using subspace acceleration , 2006, IEEE Transactions on Power Systems.

[20]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[21]  N. Martins,et al.  Efficient Computation of Multivariable Transfer Function Dominant Poles Using Subspace Acceleration , 2006, IEEE Transactions on Power Systems.

[22]  P. Pellanda,et al.  Computation of Transfer Function Dominant Zeros With Applications to Oscillation Damping Control of Large Power Systems , 2007, IEEE Transactions on Power Systems.

[23]  P. Dooren,et al.  CALCULATING THE H1-NORM OF LARGE SPARSE SYSTEMS VIA CHANDRASEKHAR ITERATIONS AND EXTRAPOLATION ⁄ , 2007 .

[24]  Gerard L. G. Sleijpen,et al.  Convergence of the Dominant Pole Algorithm and Rayleigh Quotient Iteration , 2008, SIAM J. Matrix Anal. Appl..

[25]  N. Martins,et al.  Gramian-Based Reduction Method Applied to Large Sparse Power System Descriptor Models , 2008, IEEE Transactions on Power Systems.

[26]  Danny C. Sorensen,et al.  Balanced Truncation Model Reduction for a Class of Descriptor Systems with Application to the Oseen Equations , 2008, SIAM J. Sci. Comput..

[27]  Joost Rommes,et al.  Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax=λBx with singular B , 2007, Math. Comput..

[28]  Nguyen Huu Du,et al.  Stability radii of differential algebraic equations with structured perturbations , 2008, Syst. Control. Lett..

[29]  Timo Reis,et al.  PABTEC: Passivity-Preserving Balanced Truncation for Electrical Circuits , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[30]  Timo Reis,et al.  Circuit synthesis of passive descriptor systems—a modified nodal approach , 2010 .

[31]  Michael L. Overton,et al.  Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[32]  Do Duc Thuan,et al.  Stability radius of implicit dynamic equations with constant coefficients on time scales , 2011, Syst. Control. Lett..

[33]  Timo Reis,et al.  Lyapunov Balancing for Passivity-Preserving Model Reduction of RC Circuits , 2011, SIAM J. Appl. Dyn. Syst..

[34]  Jochen Trumpf,et al.  Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011, Orlando, FL, USA, December 12-15, 2011 , 2011, CDC-ECE.

[35]  Peter Benner,et al.  Numerical computation of structured complex stability radii of large-scale matrices and pencils , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[36]  Vasile Sima,et al.  ${\cal L}_{\infty}$-Norm Computation for Continuous-Time Descriptor Systems Using Structured Matrix Pencils , 2012, IEEE Transactions on Automatic Control.

[37]  Vasile Sima,et al.  Robust and Efficient Algorithms for L∞ -Norm Computation for Descriptor Systems , 2012, ROCOND.

[38]  V. Mehrmann,et al.  An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems , 2012 .

[39]  Peter Benner,et al.  ℋ∞-Norm Computation for Large and Sparse Descriptor Systems , 2012 .

[40]  Claus Führer,et al.  Numerical Methods in Multibody Dynamics , 2013 .

[41]  Michael L. Overton,et al.  Fast Approximation of the HINFINITY Norm via Optimization over Spectral Value Sets , 2013, SIAM J. Matrix Anal. Appl..

[42]  Nicola Guglielmi,et al.  Low-Rank Dynamics for Computing Extremal Points of Real Pseudospectra , 2013, SIAM J. Matrix Anal. Appl..

[43]  Vu Hoang Linh,et al.  Robust Stability of Differential-Algebraic Equations , 2013 .

[44]  Peter Benner,et al.  A non-conforming composite quadrilateral finite element pair for feedback stabilization of the Stokes equations , 2014, J. Num. Math..

[45]  Daniel Kressner,et al.  Low rank differential equations for Hamiltonian matrix nearness problems , 2015, Numerische Mathematik.