Nested partitions using texture segmentation

A multi-step method of partitioning the pixels of an image such that the partitions at one step are wholly nested inside the partitions of the next step is described, ie, we describe an agglomerative, hierarchical segmentation technique that uses texture information to perform the segmentation. The image is requantized using K-means clustering. Then, clusters are expanded using region growing and morphological processing. This provides the most detailed level of segmentation. The next coarser segmentation levels are obtained by steadily relaxing the inter-cluster distance between the clusters that is allowed by the morphological processing. Results are demonstrated on real-world images and swathes of Brodatz textures.

[1]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[2]  James Theiler,et al.  Contiguity-enhanced k-means clustering algorithm for unsupervised multispectral image segmentation , 1997, Optics & Photonics.

[3]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[4]  Walter L. Smith Probability and Statistics , 1959, Nature.

[5]  Laurent Najman,et al.  Geodesic Saliency of Watershed Contours and Hierarchical Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Jim Kalett People and crowds, a photographic album for artists and designers , 1978 .

[7]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[8]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Yee-Hong Yang,et al.  Multiresolution Color Image Segmentation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Alan C. Bovik,et al.  Analysis of multichannel narrow-band filters for image texture segmentation , 1991, IEEE Trans. Signal Process..

[11]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[12]  A. R. Rao,et al.  Computing oriented texture fields , 1989, CVPR 1989.

[13]  Theodosios Pavlidis,et al.  Segmentation by Texture Using Correlation , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[15]  William E. Higgins,et al.  An algorithm for designing multiple Gabor filters for segmenting multi-textured images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[16]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Joachim M. Buhmann,et al.  A Deterministic Annealing Framework for Unsupervised Texture Segmentation , 1996 .

[18]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[19]  Alan C. Bovik,et al.  The multicomponent AM-FM image representation , 1996, IEEE Trans. Image Process..

[20]  Anil K. Jain,et al.  Learning Texture Discrimination Masks , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Dennis F. Dunn,et al.  Optimal Gabor filters for texture segmentation , 1995, IEEE Trans. Image Process..

[22]  Joseph P. Havlicek,et al.  The Evolution of Modern Texture Processing , 1997, Turkish Journal of Electrical Engineering and Computer Sciences.

[23]  Dennis Gabor,et al.  Theory of communication , 1946 .

[24]  R. Chellappa Two-Dimensional Discrete Gaussian Markov Random Field Models for Image Processing , 1989 .

[25]  M. R. Turner,et al.  Texture discrimination by Gabor functions , 1986, Biological Cybernetics.

[26]  B Julesz,et al.  Experiments in the visual perception of texture. , 1975, Scientific American.

[27]  M. Porat,et al.  Localized texture processing in vision: analysis and synthesis in the Gaborian space , 1989, IEEE Transactions on Biomedical Engineering.

[28]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[29]  Nuggehally Sampath Jayant,et al.  An adaptive clustering algorithm for image segmentation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[30]  Chrysostomos L. Nikias,et al.  Higher-order spectral analysis , 1993, Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ.

[31]  Jiebo Luo,et al.  Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications , 1998, IEEE Trans. Image Process..