Site-Selective Epitaxy of Graphene on Si Wafers

The fusion of graphene with silicon may provide an effective solution to the problem of scale in electronic devices. This approach will allow the excellent electronic properties of graphene to be combined with known Si device technologies. We review the epitaxial growth of graphene on Si substrates (GOS) for fabricating transistors. GOS has been multifunctionalized by controlling the orientation of the Si substrate. The site-selective epitaxy of GOS has also been developed by controlling the base SiC thin films. These results demonstrate that GOS is suitable for integrated devices.

[1]  Kenji Suzuki,et al.  An XAFS study of the poly-carbosilane conversion to SixC1−x , 1994 .

[2]  Wei Chen,et al.  Disorder beneath epitaxial graphene on SiC(0001): An x-ray absorption study , 2008 .

[3]  Jun Fujii,et al.  Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices. , 2010, Nano letters.

[4]  Wei Chen,et al.  Si clusters on reconstructed SiC (0001) revealed by surface extended x-ray absorption fine structure , 2009 .

[5]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[6]  J. E. Crombeen,et al.  LEED and Auger electron observations of the SiC(0001) surface , 1975 .

[7]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[8]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[9]  J. Moon,et al.  Top-Gated Graphene Field-Effect Transistors Using Graphene on Si (111) Wafers , 2010, IEEE Electron Device Letters.

[10]  Temperature-Programmed Desorption Observation of Graphene-on-Silicon Process , 2011 .

[11]  Hirokazu Fukidome,et al.  Observation of Amplified Stimulated Terahertz Emission from Optically Pumped Heteroepitaxial Graphene-on-Silicon Materials , 2011 .

[12]  M. Suemitsu,et al.  Hydrogen-Controlled Crystallinity of 3C-SiC Film on Si(001) Grown with Monomethylsilane , 2007 .

[13]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[14]  R. Takahashi,et al.  Low-Energy-Electron-Diffraction and X-ray-Phototelectron-Spectroscopy Studies of Graphitization of 3C-SiC(111) Thin Film on Si(111) Substrate , 2011 .

[15]  C. Berger,et al.  First direct observation of a nearly ideal graphene band structure. , 2009, Physical review letters.

[16]  H. Handa,et al.  Raman-Scattering Spectroscopy of Epitaxial Graphene Formed on SiC Film on Si Substrate , 2009 .

[17]  Hirokazu Fukidome,et al.  Surface Chemistry Involved in Epitaxy of Graphene on 3C-SiC(111)/Si(111) , 2010, Nanoscale research letters.

[18]  Epitaxy of Graphene on 3C-SiC(111) Thin Films on Microfabricated Si(111) Substrates , 2012 .

[19]  W. D. de Heer,et al.  The growth and morphology of epitaxial multilayer graphene , 2008 .

[20]  Hirokazu Fukidome,et al.  Epitaxial Growth Processes of Graphene on Silicon Substrates , 2010 .

[21]  H. Handa,et al.  Control of epitaxy of graphene by crystallographic orientation of a Si substrate toward device applications , 2011 .

[22]  Hirokazu Fukidome,et al.  Epitaxial graphene top-gate FETs on silicon substrates , 2009, 2009 International Semiconductor Device Research Symposium.

[23]  A. M. van der Zande,et al.  Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. , 2012, Nano letters.

[24]  M. Nagase,et al.  Theoretical Study on Epitaxial Graphene Growth by Si Sublimation from SiC(0001) Surface , 2011 .

[25]  M. Choe,et al.  Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities , 2012, Nanotechnology.

[26]  Hirokazu Fukidome,et al.  Precise control of epitaxy of graphene by microfabricating SiC substrate , 2012 .

[27]  I. Shimoyama,et al.  Structures of sub-monolayered silicon carbide films , 2004 .

[28]  M. Suemitsu,et al.  Formation of quasi-single-domain 3C-SiC on nominally on-axis Si(001) substrate using organosilane buffer layer , 2003 .

[29]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[30]  H. Handa,et al.  Room Temperature Logic Inverter on Epitaxial Graphene-on-Silicon Device , 2011 .

[31]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[32]  S. Abe,et al.  High-Frequency Coherent Phonons in Graphene on Silicon , 2011 .

[33]  W. D. de Heer,et al.  Observing the Quantization of Zero Mass Carriers in Graphene , 2009, Science.

[34]  A. Geim,et al.  Graphene Spin Valve Devices , 2006, IEEE Transactions on Magnetics.

[35]  Herbert A. Will,et al.  Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices , 1983 .

[36]  R. Takahashi,et al.  Transmission Electron Microscopy and Raman-Scattering Spectroscopy Observation on the Interface Structure of Graphene Formed on Si Substrates with Various Orientations , 2011 .

[37]  A. Ouerghi,et al.  Structural coherency of epitaxial graphene on 3C–SiC(111) epilayers on Si(111) , 2010 .

[38]  J.-M. Themlin,et al.  HETEROEPITAXIAL GRAPHITE ON 6H-SIC(0001): INTERFACE FORMATION THROUGH CONDUCTION-BAND ELECTRONIC STRUCTURE , 1998 .

[39]  C. Berger,et al.  Why multilayer graphene on 4H-SiC(0001[over ]) behaves like a single sheet of graphene. , 2008, Physical review letters.

[40]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[41]  J. Penuelas,et al.  Epitaxial graphene on cubic SiC(111)Si(111) substrate. , 2010, Applied physics letters.

[42]  F. Reidinger,et al.  Single‐crystalline, epitaxial cubic SiC films grown on (100) Si at 750 °C by chemical vapor deposition , 1992 .

[43]  Maki Suemitsu,et al.  Graphene formation on a 3C-SiC(111) thin film grown on Si(110) substrate , 2009 .

[44]  H. Fukidome,et al.  Epitaxial graphene on silicon substrates , 2010 .

[45]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[46]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[47]  R. Takahashi,et al.  Controls over Structural and Electronic Properties of Epitaxial Graphene on Silicon Using Surface Termination of 3C-SiC(111)/Si , 2011 .

[48]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[49]  Pinshane Y. Huang,et al.  Twinning and twisting of tri- and bilayer graphene. , 2012, Nano letters.

[50]  H. Handa,et al.  Ambipolar Behavior in Epitaxial Graphene-Based Field-Effect Transistors on Si Substrate , 2010 .

[51]  Carl W. Magnuson,et al.  Graphene films with large domain size by a two-step chemical vapor deposition process. , 2010, Nano letters (Print).

[52]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[53]  A. Ouerghi,et al.  Epitaxial graphene on 3C-SiC(111) pseudosubstrate: Structural and electronic properties , 2010 .

[54]  R. Kaplan Surface structure and composition of β- and 6H-SiC , 1989 .

[55]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[56]  Epitaxial Graphene on Si(111) Substrate Grown by Annealing 3C-SiC/Carbonized Silicon , 2012 .

[57]  H. Handa,et al.  Epitaxial graphene field effect transistors on silicon substrates , 2009, 2009 Proceedings of the European Solid State Device Research Conference.

[58]  R. Kuroda,et al.  Revolutional Progress of Silicon Technologies Exhibiting Very High Speed Performance Over a 50-GHz Clock Rate , 2007, IEEE Transactions on Electron Devices.

[59]  K. Emtsev,et al.  Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study , 2008 .

[60]  U. Starke,et al.  Low temperature growth of epitaxial graphene on SiC induced by carbon evaporation , 2009 .

[61]  Taisuke Ohta,et al.  Symmetry breaking in few layer graphene films , 2007, 0705.3705.

[62]  S. Pei,et al.  Substrate Hybridization and Rippling of Graphene Evidenced by Near-Edge X-ray Absorption Fine Structure Spectroscopy , 2010 .