Plan Recognition as Planning

In this work we aim to narrow the gap between plan recognition and planning by exploiting the power and generality of recent planning algorithms for recognizing the set G* of goals G that explain a sequence of observations given a domain theory. After providing a crisp definition of this set, we show by means of a suitable problem transformation that a goal G belongs to G* if there is an action sequence π that is an optimal plan for both the goal G and the goal G extended with extra goals representing the observations. Exploiting this result, we show how the set G* can be computed exactly and approximately by minor modifications of existing optimal and suboptimal planning algorithms, and existing polynomial heuristics. Experiments over several domains show that the suboptimal planning algorithms and the polynomial heuristics provide good approximations of the optimal goal set G* while scaling up as well as state-of-the-art planning algorithms and heuristics.

[1]  Vincent Conitzer,et al.  How many candidates are needed to make elections hard to manipulate? , 2003, TARK '03.

[2]  Malte Helmert,et al.  New Complexity Results for Classical Planning Benchmarks , 2006, ICAPS.

[3]  Jeff Orkin,et al.  Agent Architecture Considerations for Real-Time Planning in Games , 2005, AIIDE.

[4]  Edwin P. D. Pednault,et al.  ADL: Exploring the Middle Ground Between STRIPS and the Situation Calculus , 1989, KR.

[5]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[6]  Vincent Conitzer,et al.  Computational criticisms of the revelation principle , 2004, EC '04.

[7]  Yoav Shoham,et al.  Taming the Computational Complexity of Combinatorial Auctions: Optimal and Approximate Approaches , 1999, IJCAI.

[8]  Tuomas Sandholm Contract Types for Satisficing Task Allocation:I Theoretical Results , 2002 .

[9]  Hung Hai Bui,et al.  A General Model for Online Probabilistic Plan Recognition , 2003, IJCAI.

[10]  Henry A. Kautz,et al.  Sensor-Based Understanding of Daily Life via Large-Scale Use of Common Sense , 2006, AAAI.

[11]  Mark S. Fox,et al.  Constraint-Directed Negotiation of Resource Reallocations , 1990, Distributed Artificial Intelligence.

[12]  Ron Lavi,et al.  Algorithmic Mechanism Design , 2008, Encyclopedia of Algorithms.

[13]  Martin Andersson,et al.  Contract type sequencing for reallocative negotiation , 2000, Proceedings 20th IEEE International Conference on Distributed Computing Systems.

[14]  Austin Tate,et al.  O-Plan: The open Planning Architecture , 1991, Artif. Intell..

[15]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[16]  Robert P. Goldman,et al.  A New Model of Plan Recognition , 1999, UAI.

[17]  Joel Veness,et al.  Monte-Carlo Planning in Large POMDPs , 2010, NIPS.

[18]  Vincent Conitzer,et al.  Automated Mechanism Design with a Structured Outcome Space , 2003 .

[19]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[20]  Tuomas Sandholm,et al.  An alternating offers bargaining model for computationally limited agents , 2002, AAMAS '02.

[21]  Edward J. Sondik,et al.  The optimal control of par-tially observable Markov processes , 1971 .

[22]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Malte Helmert,et al.  Complexity results for standard benchmark domains in planning , 2003, Artif. Intell..

[24]  Oriol Carbonell-Nicolau Games and Economic Behavior , 2011 .

[25]  Robert P. Goldman,et al.  Plan recognition in intrusion detection systems , 2001, Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX'01.

[26]  James A. Hendler,et al.  HTN Planning: Complexity and Expressivity , 1994, AAAI.

[27]  Sriraam Natarajan,et al.  A Decision-Theoretic Model of Assistance , 2007, IJCAI.

[28]  Michael P. Wellman,et al.  Distributed quiescence detection in multiagent negotiation , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[29]  N. S. Sridharan,et al.  The Plan Recognition Problem: An Intersection of Psychology and Artificial Intelligence , 1978, Artif. Intell..

[30]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[31]  Subhash Suri,et al.  Solving combinatorial exchanges: optimality via a few partial bids , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[32]  Richard E. Korf,et al.  Real-Time Heuristic Search , 1990, Artif. Intell..

[33]  Robert P. Goldman,et al.  A probabilistic plan recognition algorithm based on plan tree grammars , 2009, Artif. Intell..

[34]  Tuomas Sandholm,et al.  Effectiveness of Preference Elicitation in Combinatorial Auctions , 2002, AMEC.

[35]  Subhash Suri,et al.  Improved Algorithms for Optimal Winner Determination in Combinatorial Auctions and Generalizations , 2000, AAAI/IAAI.

[36]  José L. Balcázar The Complexity of Searching Implicit Graphs , 1996, Artif. Intell..

[37]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[38]  C. Raymond Perrault,et al.  Beyond Question-Answering. , 1981 .

[39]  Tuomas Sandholm,et al.  Computationally Limited Agents in Auctions , 2001 .

[40]  Michael P. Wellman,et al.  Combinatorial auctions for supply chain formation , 2000, EC '00.

[41]  Noam Nisan,et al.  Computationally feasible VCG mechanisms , 2000, EC '00.

[42]  Martin Andersson,et al.  Time-Quality Tradeoffs in Reallocative Negotiation with Combinatorial Contract Types , 1999, AAAI/IAAI.

[43]  Marc B. Vilain,et al.  Getting Serious about Parsing Plans : a Grammatical Analysis of Plan Recognition , 1990 .

[44]  Matthew Stone,et al.  Sentence generation as a planning problem , 2007, ACL.

[45]  Blai Bonet,et al.  A Robust and Fast Action Selection Mechanism for Planning , 1997, AAAI/IAAI.

[46]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[47]  Reid G. Smith,et al.  The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver , 1980, IEEE Transactions on Computers.

[48]  Pavol Návrat,et al.  Expressivity of STRIPS-Like and HTN-Like Planning , 2007, KES-AMSTA.

[49]  Victor R. Lesser,et al.  Equilibrium Analysis of the Possibilities of Unenforced Exchange in Multiagent Systems , 1995, IJCAI.

[50]  Makoto Yokoo,et al.  Algorithms for Distributed Constraint Satisfaction: A Review , 2000, Autonomous Agents and Multi-Agent Systems.

[51]  Hector Geffner,et al.  Trees of shortest paths vs. Steiner trees: understanding and improving delete relaxation heuristics , 2009, IJCAI 2009.

[52]  David E. Smith,et al.  Conditional Effects in Graphplan , 1998, AIPS.

[53]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[54]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[55]  Jörg Hoffmann,et al.  Ordered Landmarks in Planning , 2004, J. Artif. Intell. Res..

[56]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[57]  Tuomas Sandholm,et al.  Surplus equivalence of leveled commitment contracts , 2002, Artif. Intell..

[58]  Edmund H. Durfee,et al.  The Automated Mapping of Plans for Plan Recognition , 1994, AAAI.

[59]  C. d'Aspremont,et al.  Incentives and incomplete information , 1979 .

[60]  P. Haslum h m ( P ) = k 1 ( P m ): alternative characterisations of the generalisation from h max to h m , 2009, ICAPS 2009.

[61]  Jörg Hoffmann,et al.  SAP Speaks PDDL , 2010, AAAI.

[62]  Blai Bonet,et al.  Planning as Heuristic Search: New Results , 1999, ECP.

[63]  P. Pattanaik,et al.  Social choice and welfare , 1983 .

[64]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[65]  Anthony M. Kwasnica,et al.  A New and Improved Design for Multiobject Iterative Auctions , 2005, Manag. Sci..

[66]  Trey Smith,et al.  Constructing and Clearing Combinatorial Exchanges Using Preference Elicitation , 2002 .

[67]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[68]  Blai Bonet,et al.  Strengthening Landmark Heuristics via Hitting Sets , 2010, ECAI.

[69]  Redaktionen THE REVIEW OF ECONOMIC STUDIES , 1960 .

[70]  Blai Bonet,et al.  Solving POMDPs: RTDP-Bel vs. Point-based Algorithms , 2009, IJCAI.

[71]  Peter Stone,et al.  Combining manual feedback with subsequent MDP reward signals for reinforcement learning , 2010, AAMAS.

[72]  Tuomas Sandholm,et al.  Issues in Computational Vickrey Auctions , 2000, Int. J. Electron. Commer..

[73]  Oliver Lemon,et al.  Natural Language Generation as Planning Under Uncertainty for Spoken Dialogue Systems , 2009, EACL.

[74]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[75]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[76]  Chris L. Baker,et al.  Action understanding as inverse planning , 2009, Cognition.

[77]  Michael C. Horsch,et al.  Dynamic Bayesian networks , 1990 .

[78]  Norman M. Sadeh,et al.  Distributed constrained heuristic search , 1991, IEEE Trans. Syst. Man Cybern..

[79]  Douglas E. Appelt Planning Natural-Language Utterances , 1982, AAAI.

[80]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[81]  Victor R. Lesser,et al.  Leveled Commitment Contracts and Strategic Breach , 2001, Games Econ. Behav..

[82]  Tuomas Sandholm,et al.  Power, Dependence and Stability in Multiagent Plans , 1999, AAAI/IAAI.

[83]  Yoav Shoham,et al.  Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.

[84]  Piergiorgio Bertoli,et al.  Planning in Nondeterministic Domains under Partial Observability via Symbolic Model Checking , 2001, IJCAI.

[85]  Jeffrey S. Rosenschein,et al.  A Non-manipulable Meeting Scheduling System , 1994 .

[86]  Ho Soo Lee,et al.  Computational Aspects of Clearing Continuous Call Double Auctions with Assignment Constraints and Indivisible Demand , 2001, Electron. Commer. Res..

[87]  Victor R. Lesser,et al.  Issues in Automated Negotiation and Electronic Commerce: Extending the Contract Net Framework , 1997, ICMAS.

[88]  Tuomas Sandholm,et al.  eMediator: A Next Generation Electronic Commerce Server , 1999, AGENTS '00.

[89]  Noam Nisan,et al.  Bidding and allocation in combinatorial auctions , 2000, EC '00.

[90]  Tuomas Sandholm Agents in Electronic Commerce: Component Technologies for Automated Negotiation and Coalition Formation , 2004, Autonomous Agents and Multi-Agent Systems.

[91]  David Levine,et al.  CABOB: A Fast Optimal Algorithm for Combinatorial Auctions , 2001, IJCAI.

[92]  Y. Shoham,et al.  Truth revelation in rapid, approximately efficient combinatorial auctions , 2001 .

[93]  Vincent Conitzer,et al.  Automated mechanism design: complexity results stemming from the single-agent setting , 2003, ICEC '03.

[94]  Malte Helmert,et al.  A Planning Heuristic Based on Causal Graph Analysis , 2004, ICAPS.

[95]  Rolf Drechsler,et al.  Efficiency of Multi-Valued Encoding in SAT-based ATPG , 2006, 36th International Symposium on Multiple-Valued Logic (ISMVL'06).

[96]  Daniel Lehmann,et al.  Optimal solutions for multi-unit combinatorial auctions: branch and bound heuristics , 2000, EC '00.

[97]  George E. Monahan,et al.  A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms , 2007 .

[98]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[99]  Tuomas Sandholm,et al.  (Im)possibility of safe exchange mechanism design , 2002, AAAI/IAAI.

[100]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[101]  Patrik Haslum,et al.  Admissible Heuristics for Optimal Planning , 2000, AIPS.

[102]  Shlomo Zilberstein,et al.  LAO*: A heuristic search algorithm that finds solutions with loops , 2001, Artif. Intell..

[103]  Eithan Ephrati,et al.  The Clarke Tax as a Consensus Mechanism Among Automated Agents , 1991, AAAI.

[104]  Tuomas Sandholm,et al.  Generalizing preference elicitation in combinatorial auctions , 2003, AAMAS '03.

[105]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[106]  Svetha Venkatesh,et al.  The Hidden Permutation Model and Location-Based Activity Recognition , 2008, AAAI.

[107]  T. Sandholm,et al.  Costly valuation computation in auctions , 2001 .

[108]  Qiang Yang,et al.  Quantifying information and contradiction in propositional logic through test actions , 2009, IJCAI.

[109]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[110]  Inon Zuckerman,et al.  Universal Voting Protocol Tweaks to Make Manipulation Hard , 2003, IJCAI.

[111]  Judea Pearl,et al.  Qualitative Probabilities for Default Reasoning, Belief Revision, and Causal Modeling , 1996, Artif. Intell..

[112]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[113]  Martin Andersson,et al.  Leveled Commitment Contracts with Myopic and Strategic Agents , 1998, AAAI/IAAI.

[114]  J. Davenport Editor , 1960 .

[115]  Giovanni Pezzulo,et al.  Coordinating with the Future: The Anticipatory Nature of Representation , 2008, Minds and Machines.

[116]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[117]  Tuomas Sandholm,et al.  Using value queries in combinatorial auctions , 2003, EC '03.

[118]  Tuomas Sandholm,et al.  An Implementation of the Contract Net Protocol Based on Marginal Cost Calculations , 1993, AAAI.

[119]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[120]  Victor R. Lesser,et al.  Leveled-Commitment Contracting: A Backtracking Instrument for Multiagent Systems , 2002, AI Mag..

[121]  Makoto Yokoo,et al.  Defection-free exchange mechanisms for information goods , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[122]  S. Rassenti,et al.  A Combinatorial Auction Mechanism for Airport Time Slot Allocation , 1982 .

[123]  Vladimir Lifschitz,et al.  ON THE SEMANTICS OF STRIPS , 1987 .

[124]  Malte Helmert,et al.  Landmarks Revisited , 2008, AAAI.

[125]  Tuomas Sandholm,et al.  Algorithms for Optimizing Leveled Commitment Contracts , 1999, IJCAI.

[126]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[127]  Arne Andersson,et al.  Integer programming for combinatorial auction winner determination , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[128]  Moshe Tennenholtz,et al.  An Algorithm for Multi-Unit Combinatorial Auctions , 2000, AAAI/IAAI.

[129]  Marco Roveri,et al.  Conformant Planning via Symbolic Model Checking , 2000, J. Artif. Intell. Res..

[130]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[131]  Blai Bonet,et al.  Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming , 2003, ICAPS.

[132]  Joelle Pineau,et al.  Anytime Point-Based Approximations for Large POMDPs , 2006, J. Artif. Intell. Res..

[133]  Earl D. Sacerdoti,et al.  The Nonlinear Nature of Plans , 1975, IJCAI.

[134]  Subhash Suri,et al.  Side constraints and non-price attributes in markets , 2006, Games Econ. Behav..

[135]  Victor Lesser,et al.  Negotiation among self-interested computationally limited agents , 1996 .

[136]  Oren Etzioni,et al.  A Sound and Fast Goal Recognizer , 1995, IJCAI.

[137]  Moshe Tennenholtz Some Tractable Combinatorial Auctions , 2000, AAAI/IAAI.

[138]  Eithan Ephrati,et al.  Multi-Agent Planning as a Dynamic Search for Social Consensus , 1993, IJCAI.

[139]  R. Bellman Dynamic programming. , 1957, Science.

[140]  Henry A. Kautz,et al.  Generalized Plan Recognition , 1986, AAAI.

[141]  `# Clavicle —? etiology' , 1996 .

[142]  Hector Geffner,et al.  Heuristics for Planning with Action Costs Revisited , 2008, ECAI.

[143]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[144]  Subhash Suri,et al.  BOB: Improved winner determination in combinatorial auctions and generalizations , 2003, Artif. Intell..

[145]  Craig Boutilier,et al.  Bidding Languages for Combinatorial Auctions , 2001, IJCAI.

[146]  T. Sandholm,et al.  Preference Elicitation in Combinatorial Auctions (Extended Abstract) , 2001 .

[147]  Subhash Suri,et al.  Optimal Clearing of Supply/Demand Curves , 2002 .

[148]  David C. Parkes,et al.  Iterative Combinatorial Auctions: Theory and Practice , 2000, AAAI/IAAI.

[149]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..

[150]  Avrim Blum,et al.  On polynomial-time preference elicitation with value queries , 2003, EC '03.

[151]  David Levine,et al.  Winner determination in combinatorial auction generalizations , 2002, AAMAS '02.

[152]  M. Trick,et al.  The computational difficulty of manipulating an election , 1989 .

[153]  Holger H. Hoos SAT-Encodings, Search Space Structure, and Local Search Performance , 1999, IJCAI.

[154]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[155]  Richard E. Korf,et al.  Linear-Space Best-First Search , 1993, Artif. Intell..

[156]  Tuomas Sandholm,et al.  Bargaining with limited computation: Deliberation equilibrium , 2001, Artif. Intell..

[157]  Silvia Richter,et al.  The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks , 2010, J. Artif. Intell. Res..

[158]  D. Dennett Intentional systems in cognitive ethology: The “Panglossian paradigm” defended , 1983, Behavioral and Brain Sciences.

[159]  C. Raymond Perrault,et al.  A Plan-Based Analysis of Indirect Speech Act , 1980, CL.

[160]  Héctor Geffner Functional Strips , 2001 .

[161]  Daniel S. Weld An Introduction to Least Commitment Planning , 1994, AI Mag..

[162]  Malte Helmert,et al.  Accuracy of Admissible Heuristic Functions in Selected Planning Domains , 2008, AAAI.

[163]  Drew McDermott,et al.  Using Regression-Match Graphs to Control Search in Planning , 1999, Artif. Intell..

[164]  Michael P. Wellman,et al.  AkBA: a progressive, anonymous-price combinatorial auction , 2000, EC '00.

[165]  Milos Hauskrecht,et al.  Value-Function Approximations for Partially Observable Markov Decision Processes , 2000, J. Artif. Intell. Res..

[166]  Gal A. Kaminka,et al.  Fast and Complete Symbolic Plan Recognition , 2005, IJCAI.

[167]  Markus Jakobsson,et al.  Ripping Coins For a Fair Exchange , 1995, EUROCRYPT.

[168]  Hector Geffner,et al.  Probabilistic Plan Recognition Using Off-the-Shelf Classical Planners , 2010, AAAI.

[169]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[170]  Tuomas Sandholm,et al.  Miscomputing ratio: social cost of selfish computing , 2003, AAMAS '03.

[171]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[172]  Michael P. Wellman,et al.  Probabilistic State-Dependent Grammars for Plan Recognition , 2000, UAI.

[173]  E. H. Clarke Incentives in public decision-making , 1980 .

[174]  James M. Rehg,et al.  A Scalable Approach to Activity Recognition based on Object Use , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[175]  Tuomas Sandholm,et al.  Algorithm for optimal winner determination in combinatorial auctions , 2002, Artif. Intell..

[176]  Roberto Navigli,et al.  International Joint Conference on Artificial Intelligence (IJCAI) , 2011, IJCAI 2011.

[177]  Tuomas Sandholm,et al.  Approaches to winner determination in combinatorial auctions , 2000, Decis. Support Syst..

[178]  Vincent Conitzer,et al.  Automated mechanism design for a self-interested designer , 2003, EC '03.

[179]  A. Favero,et al.  Italy , 1996, The Lancet.

[180]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[181]  Robert P. Goldman,et al.  A Bayesian Model of Plan Recognition , 1993, Artif. Intell..

[182]  M. Armstrong Optimal Multi-Object Auctions , 2000 .