Thermal effusivity profile characterization from pulse photothermal data

An inversion method is proposed for depth profiling of the thermal effusivity from the surface temperature evolution after an excitation. Focus is on pulse heating. The effusivity profile is obtained through a Laplace inversion. The Stehfest method is implemented and we propose to use the number of elements in the Stehfest series N as a regularizing parameter. The optimum N value is defined by plotting a characteristic C curve with the norm of the solution derivative and the norm of the residues of the so-called apparent effusivity function. Examples of inversion results are given for linear and Gaussian effusivity profiles. For this purpose, we extended the formalism of thermal quadrupoles to the case of linearly varying effusivity. A statistical analysis is performed to assess the influence of noise on the inversion results. Recommendations on the thermogram minimum duration are derived therefrom. Experimental results obtained with a case-hardened steel sample show the potential of the present nondestru...

[1]  D. P. Gaver,et al.  Observing Stochastic Processes, and Approximate Transform Inversion , 1966, Oper. Res..

[2]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[3]  J. Batsale,et al.  Extension de la méthode des quadripôles thermiques à l'aide de transformations intégrales—calcul du transfert thermique au travers d'un défaut plan bidimensionnel , 1994 .

[4]  Alternating heat diffusion in thermophysical depth profiles: multilayer and continuous descriptions , 1998 .

[5]  Harald Stehfest,et al.  Remark on algorithm 368: Numerical inversion of Laplace transforms , 1970, CACM.

[6]  A new method of reconstruction of thermal conductivity-depth profiles from photoacoustic or photothermal measurements , 1998 .

[7]  A. Istratov,et al.  Exponential analysis in physical phenomena , 1999 .

[8]  Christ Glorieux,et al.  Depth profiling of thermally inhomogeneous materials by neural network recognition of photothermal time domain data , 1999 .

[9]  Jan Thoen,et al.  Thermal waves in materials with linearly inhomogeneous thermal conductivity , 1994 .

[10]  Christ Glorieux,et al.  Photothermal depth profiling: Analysis of reconstruction errors , 1999 .

[11]  A. Thakur Periodic heat transfer through an inhomogeneous medium , 1982 .

[12]  T. Velinov,et al.  Real-time depth profile reconstruction of the thermal conductivity of inhomogeneous solids , 1998 .

[13]  H. Walther,et al.  Photothermal depth profiling using only phase data , 1996 .

[14]  Paolo Cielo,et al.  Pulsed photothermal modeling of layered materials , 1986 .

[15]  Christ Glorieux,et al.  Thermal depth profile reconstruction by neural network recognition of the photothermal frequency spectrum , 1996 .

[16]  A. Degiovanni Conduction dans un “mur” multicouche avec sources: extension de la notion de quadripole , 1988 .

[17]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..