Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law

In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model coupled to the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce two variants of a numerical scheme based on the method of characteristics to simulate this model. We study and verify numerically the properties of these schemes. We finally present numerical simulations of a loss of flow accident (LOFA) induced by a coolant pump trip event.

[1]  Philippe Fillion,et al.  FLICA-OVAP: A new platform for core thermal–hydraulic studies , 2011 .

[2]  G. Volpe Performance of compressible flow codes at low Mach numbers , 1993 .

[3]  Yohan Penel,et al.  Existence of global solutions to the 1D Abstract Bubble Vibration model , 2013, Differential and Integral Equations.

[4]  O. Metayer,et al.  Élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques Elaborating equations of state of a liquid and its vapor for two-phase flow models , 2004 .

[5]  Richard T. Lahey,et al.  An Exact Solution for Flow Transients in Two-Phase Systems by the Method of Characteristics , 1973 .

[6]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[7]  Stéphane Dellacherie,et al.  Study of a low Mach nuclear core model for two-phase flows with phase transition II: tabulated equation of state , 2015 .

[8]  Stéphane Dellacherie,et al.  The influence of cell geometry on the Godunov scheme applied to the linear wave equation , 2010, J. Comput. Phys..

[9]  C. J. Adkins Thermodynamics and statistical mechanics , 1972, Nature.

[10]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[11]  O. Simonin,et al.  A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media , 2013 .

[12]  Stéphane Dellacherie,et al.  Numerical resolution of a potential diphasic low Mach number system , 2007, J. Comput. Phys..

[13]  D. Durran Numerical Methods for Fluid Dynamics: With Applications to Geophysics , 2010 .

[14]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[15]  Eric Goncalves,et al.  Numerical study of cavitating flows with thermodynamic effect , 2010 .

[16]  Emmanuel Creusé,et al.  An hybrid finite volume-finite element method for variable density incompressible flows , 2008, J. Comput. Phys..

[17]  Donald Greenspan,et al.  Pressure method for the numerical solution of transient, compressible fluid flows , 1984 .

[18]  S. Dellacherie ON A DIPHASIC LOW MACH NUMBER SYSTEM , 2005 .

[19]  P. Embid,et al.  Well-posedness of the nonlinear equations for zero mach number combustion , 1987 .

[20]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[21]  Rémi Abgrall,et al.  Modelling phase transition in metastable liquids: application to cavitating and flashing flows , 2008, Journal of Fluid Mechanics.

[22]  Stéphane Dellacherie,et al.  2D numerical simulation of a low Mach nuclear core model with stiffened gas using FreeFem , 2014 .

[23]  P. Colella,et al.  A Projection Method for Low Speed Flows , 1999 .

[24]  Stéphane Dellacherie On a low Mach nuclear core model , 2012 .

[25]  Stéphane Jaouen,et al.  Etude mathematique et numerique de stabilite pour des modeles hydrodynamiques avec transition de phase , 2001 .

[26]  R. Menikoff,et al.  The Riemann problem for fluid flow of real materials , 1989 .

[27]  Siegfried Müller,et al.  The Riemann Problem for the Euler Equations with Nonconvex and Nonsmooth Equation of State: Construction of Wave Curves , 2006, SIAM J. Sci. Comput..

[28]  S. Clerc,et al.  Numerical Simulation of the Homogeneous Equilibrium Model for Two-Phase Flows , 2000 .

[29]  John B. Bell,et al.  A projection method for combustion in the zero Mach number limit , 1993 .

[30]  G. Sivashinsky,et al.  Hydrodynamic theory of flame propagation in an enclosed volume , 1979 .

[31]  Andrew J. Majda,et al.  Simplified Equations for Low Mach Number Combustion with Strong Heat Release , 1991 .

[32]  Yohan Penel,et al.  An explicit stable numerical scheme for the $1D$ transport equation , 2011 .

[33]  D. Bestion,et al.  The physical closure laws in the CATHARE code , 1990 .

[34]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[35]  Yohan Penel Etude théorique et numérique de la déformation d'une interface séparant deux fluides non-miscibles à bas nombre de Mach , 2010 .

[36]  Grégoire Allaire,et al.  MODELLING AND SIMULATION OF LIQUID-VAPOR PHASE TRANSITION IN COMPRESSIBLE FLOWS BASED ON THERMODYNAMICAL EQUILIBRIUM ∗ , 2012 .

[37]  Grégoire Allaire,et al.  A strictly hyperbolic equilibrium phase transition model , 2007 .

[38]  Gloria Faccanoni Étude d'un modèle fin de changement de phase liquide-vapeur. Contribution à l'étude de la crise d'ébullition. , 2008 .

[39]  Stéphane Dellacherie,et al.  Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..

[40]  Andreas Acrivos,et al.  Method of Characteristics Technique. Application to Heat and Mass Transfer Problems , 1956 .

[41]  Stéphane Dellacherie,et al.  Study of a low Mach nuclear core model for single-phase flows , 2012 .

[42]  Wolfgang Dahmen,et al.  Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of state , 2005 .

[43]  Thermohydraulique des réacteurs , 1978 .

[44]  Michael Zingale,et al.  Low Mach Number Modeling of Type Ia Supernovae , 2005 .

[45]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[46]  A. S. Almgren,et al.  Low mach number modeling of type Ia supernovae. I. Hydrodynamics , 2005 .

[47]  Richard Saurel,et al.  Modelling evaporation fronts with reactive Riemann solvers , 2005 .

[48]  P. Raviart,et al.  Construction of Godunov type schemes accurate at any Mach number , 2013 .

[49]  D. Durran Numerical Methods for Fluid Dynamics , 2010 .