Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law
暂无分享,去创建一个
Stéphane Dellacherie | Bérénice Grec | Gloria Faccanoni | Yohan Penel | Manuel Bernard | S. Dellacherie | Y. Penel | Manuel Bernard | Gloria Faccanoni | Bérénice Grec
[1] Philippe Fillion,et al. FLICA-OVAP: A new platform for core thermal–hydraulic studies , 2011 .
[2] G. Volpe. Performance of compressible flow codes at low Mach numbers , 1993 .
[3] Yohan Penel,et al. Existence of global solutions to the 1D Abstract Bubble Vibration model , 2013, Differential and Integral Equations.
[4] O. Metayer,et al. Élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques Elaborating equations of state of a liquid and its vapor for two-phase flow models , 2004 .
[5] Richard T. Lahey,et al. An Exact Solution for Flow Transients in Two-Phase Systems by the Method of Characteristics , 1973 .
[6] R. Callen,et al. Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .
[7] Stéphane Dellacherie,et al. Study of a low Mach nuclear core model for two-phase flows with phase transition II: tabulated equation of state , 2015 .
[8] Stéphane Dellacherie,et al. The influence of cell geometry on the Godunov scheme applied to the linear wave equation , 2010, J. Comput. Phys..
[9] C. J. Adkins. Thermodynamics and statistical mechanics , 1972, Nature.
[10] James A. Sethian,et al. THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .
[11] O. Simonin,et al. A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media , 2013 .
[12] Stéphane Dellacherie,et al. Numerical resolution of a potential diphasic low Mach number system , 2007, J. Comput. Phys..
[13] D. Durran. Numerical Methods for Fluid Dynamics: With Applications to Geophysics , 2010 .
[14] Eric W. Lemmon,et al. Thermophysical Properties of Fluid Systems , 1998 .
[15] Eric Goncalves,et al. Numerical study of cavitating flows with thermodynamic effect , 2010 .
[16] Emmanuel Creusé,et al. An hybrid finite volume-finite element method for variable density incompressible flows , 2008, J. Comput. Phys..
[17] Donald Greenspan,et al. Pressure method for the numerical solution of transient, compressible fluid flows , 1984 .
[18] S. Dellacherie. ON A DIPHASIC LOW MACH NUMBER SYSTEM , 2005 .
[19] P. Embid,et al. Well-posedness of the nonlinear equations for zero mach number combustion , 1987 .
[20] Grégoire Allaire,et al. A five-equation model for the simulation of interfaces between compressible fluids , 2002 .
[21] Rémi Abgrall,et al. Modelling phase transition in metastable liquids: application to cavitating and flashing flows , 2008, Journal of Fluid Mechanics.
[22] Stéphane Dellacherie,et al. 2D numerical simulation of a low Mach nuclear core model with stiffened gas using FreeFem , 2014 .
[23] P. Colella,et al. A Projection Method for Low Speed Flows , 1999 .
[24] Stéphane Dellacherie. On a low Mach nuclear core model , 2012 .
[25] Stéphane Jaouen,et al. Etude mathematique et numerique de stabilite pour des modeles hydrodynamiques avec transition de phase , 2001 .
[26] R. Menikoff,et al. The Riemann problem for fluid flow of real materials , 1989 .
[27] Siegfried Müller,et al. The Riemann Problem for the Euler Equations with Nonconvex and Nonsmooth Equation of State: Construction of Wave Curves , 2006, SIAM J. Sci. Comput..
[28] S. Clerc,et al. Numerical Simulation of the Homogeneous Equilibrium Model for Two-Phase Flows , 2000 .
[29] John B. Bell,et al. A projection method for combustion in the zero Mach number limit , 1993 .
[30] G. Sivashinsky,et al. Hydrodynamic theory of flame propagation in an enclosed volume , 1979 .
[31] Andrew J. Majda,et al. Simplified Equations for Low Mach Number Combustion with Strong Heat Release , 1991 .
[32] Yohan Penel,et al. An explicit stable numerical scheme for the $1D$ transport equation , 2011 .
[33] D. Bestion,et al. The physical closure laws in the CATHARE code , 1990 .
[34] H. Callen. Thermodynamics and an Introduction to Thermostatistics , 1988 .
[35] Yohan Penel. Etude théorique et numérique de la déformation d'une interface séparant deux fluides non-miscibles à bas nombre de Mach , 2010 .
[36] Grégoire Allaire,et al. MODELLING AND SIMULATION OF LIQUID-VAPOR PHASE TRANSITION IN COMPRESSIBLE FLOWS BASED ON THERMODYNAMICAL EQUILIBRIUM ∗ , 2012 .
[37] Grégoire Allaire,et al. A strictly hyperbolic equilibrium phase transition model , 2007 .
[38] Gloria Faccanoni. Étude d'un modèle fin de changement de phase liquide-vapeur. Contribution à l'étude de la crise d'ébullition. , 2008 .
[39] Stéphane Dellacherie,et al. Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..
[40] Andreas Acrivos,et al. Method of Characteristics Technique. Application to Heat and Mass Transfer Problems , 1956 .
[41] Stéphane Dellacherie,et al. Study of a low Mach nuclear core model for single-phase flows , 2012 .
[42] Wolfgang Dahmen,et al. Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of state , 2005 .
[43] Thermohydraulique des réacteurs , 1978 .
[44] Michael Zingale,et al. Low Mach Number Modeling of Type Ia Supernovae , 2005 .
[45] H. Guillard,et al. On the behaviour of upwind schemes in the low Mach number limit , 1999 .
[46] A. S. Almgren,et al. Low mach number modeling of type Ia supernovae. I. Hydrodynamics , 2005 .
[47] Richard Saurel,et al. Modelling evaporation fronts with reactive Riemann solvers , 2005 .
[48] P. Raviart,et al. Construction of Godunov type schemes accurate at any Mach number , 2013 .
[49] D. Durran. Numerical Methods for Fluid Dynamics , 2010 .