Positive value of information in games

Abstract.We exhibit a general class of interactive decision situations in which all the agents benefit from more information. This class includes as a special case the classical comparison of statistical experiments à la Blackwell.

[1]  Evan L. Porteus,et al.  Temporal Resolution of Uncertainty and Dynamic Choice Theory , 1978 .

[2]  Bertrand Munier,et al.  Beliefs, interactions and preferences in decision making , 1999 .

[3]  Marco Scarsini,et al.  Archimedean copulae and positive dependence , 2005 .

[4]  Massimo Marinacci,et al.  The convexity-cone approach to comparative risk and downside risk , 2002 .

[5]  Marco Scarsini,et al.  The convexity-cone approach to comparative risk and downside risk , 2003 .

[6]  N. Persico Information acquisition in auctions , 2000 .

[7]  Massimo Marinacci,et al.  Certainty Independence and the Separation of Utility and Beliefs , 2005, J. Econ. Theory.

[8]  Massimo Marinacci,et al.  Ambiguity from the Differential Viewpoint , 2002 .

[9]  Arnold Chassagnon,et al.  A Positive Value of Information for a Non-Bayesian Decision-Maker , 1999 .

[10]  Peter P. Wakker,et al.  Nonexpected utility as aversion of information , 1988 .

[11]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[12]  Joel E. Cohen,et al.  A paradox of congestion in a queuing network , 1990, Journal of Applied Probability.

[13]  D. Blackwell Comparison of Experiments , 1951 .

[14]  Edward E. Schlee,et al.  The value of information in anticipated utility theory , 1990 .

[15]  N. Sahlin Weight of the Value of Knowledge , 1990 .

[16]  Ariel Orda,et al.  Avoiding the Braess paradox in non-cooperative networks , 1999, Journal of Applied Probability.

[17]  F. Maccheroni,et al.  Coherence without additivity , 2003 .

[18]  Massimo Marinacci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIES Risk, Ambiguity, and the Separation of Utility and Beliefs † , 2001 .

[19]  Thibault Gajdos,et al.  Unequal uncertainties and uncertain inequalities: an axiomatic approach , 2004, J. Econ. Theory.

[20]  Steven Haberman,et al.  Optimal investment strategies and risk measures in defined contribution pension schemes , 2002 .

[21]  L. Montrucchio,et al.  Cores and stable sets of finite dimensional games , 2003 .

[22]  Zvi Safra On the nonexistence of Blackwell's theorem-type results with general preference relations , 1996 .

[23]  Massimo Marinacci,et al.  Probabilistic Sophistication and Multiple Priors , 2002 .

[24]  Andrea Roncoroni Change of numéraire for affine arbitrage pricing models driven by multifactor marked point processes , 2001 .

[25]  Yair Tauman,et al.  On the value of information in a strategic conflict , 1990 .

[26]  Simon Grant,et al.  Preference for Information and Dynamic Consistency , 2000 .

[27]  Claudio Mattalia,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESExistence of Solutions and Asset Pricing Bubbles in General Equilibrium Models , 2002 .

[28]  Marco Scarsini,et al.  A folk theorem for minority games , 2005, Games Econ. Behav..

[29]  Olivier Gossner,et al.  THE HEBREW UNIVERSITY OF JERUSALEM POSITIVE VALUE OF INFORMATION IN GAMES , 2002 .

[30]  Fabio Privileggi,et al.  Wealth Polarization and Pulverization in Fractal Societies , 2002 .

[31]  Umberto Cherubini,et al.  Multivariate Option Pricing with Copulas , 2000 .

[32]  Massimo Marinacci,et al.  Ultramodular Functions , 2005, Math. Oper. Res..

[33]  Abraham Neyman The Positive Value of Information , 1991 .

[34]  F. Kelly,et al.  Braess's paradox in a loss network , 1997, Journal of Applied Probability.

[35]  Susan Athey,et al.  The Value of Information in Monotone Decision Problems , 1998 .

[36]  John A. Weymark,et al.  Multidimensional generalized Gini indices , 2005 .

[37]  Umberto Cherubini,et al.  Pricing Vulnerable Options with Copulas , 2001 .

[38]  Thibault Gajdos,et al.  Decision making with imprecise probabilistic information , 2004 .

[39]  William H. Ruckle,et al.  BV as a Dual Space. , 2001 .

[40]  Edward E. Schlee,et al.  The value of perfect information in nonlinear utility theory , 1991 .

[41]  Marco Scarsini,et al.  Zonoids, linear dependence, and size-biased distributions on the simplex , 2003, Advances in Applied Probability.

[42]  Fabio Maccheroni,et al.  Expected utility theory without the completeness axiom , 2004, J. Econ. Theory.

[43]  Massimo Marinacci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESChoquet Insurance Pricing: a Caveat ∗ , 2002 .

[44]  L. Montrucchio,et al.  Subcalculus for set functions and cores of TU games , 2003 .

[45]  Simon Grant,et al.  Intrinsic Preference for Information , 1998 .

[46]  Zvi Safra,et al.  On the nonexistence of Blackwell's theorem-type results with general preference relations , 1995 .

[47]  Olivier Gossner,et al.  Comparison of Information Structures , 2000, Games Econ. Behav..

[48]  Massimo Marinacci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESInsurance Premia Consistent with the Market ∗ , 2002 .

[49]  J. Hirshleifer The Private and Social Value of Information and the Reward to Inventive Activity , 1971 .

[50]  Massimo Marinacci,et al.  A Subjective Spin on Roulette Wheels , 2001 .

[51]  Umberto Cherubini,et al.  Pricing Vulnerable Options with Copulas , 2001 .

[52]  Joseph B. Kadane,et al.  Reasoning to a foregone conclusion , 1996 .

[53]  Massimo Morelli,et al.  Credit Rationing, Wealth Inequality, and Allocation of Talent , 2002 .

[54]  R. Aumann,et al.  Cooperation and bounded recall , 1989 .

[55]  Luigi Montrucchio,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESOn Fragility of Bubbles in Equilibrium Asset Pricing Models of Lucas-Type ∗ , 2001 .

[56]  E. Lehmann Comparing Location Experiments , 1988 .

[57]  S. Zamir,et al.  Repeated Games. Part B: The Central Results , 1994 .

[58]  Itzhak Zilcha,et al.  The value of Information: the Case of Signal-Dependent Opportunity Sets , 1997 .

[59]  Domenico Menicucci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESOptimal Two-Object Auctions with Synergies * , 2001 .

[60]  Fabio Maccheroni,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESYaari dual theory without the completeness axiom ∗ , 2001 .

[61]  Massimo Marinacci,et al.  A characterization of the core of convex games through Gateaux derivatives , 2004, J. Econ. Theory.

[62]  Massimo Marinacci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIESHOW TO CUT A PIZZA FAIRLY: , 2002 .

[63]  Massimo Marinacci,et al.  Random Correspondences as Bundles of Random Variables , 2001 .