Side‐Chain Functionalized Polymer Hole‐Transporting Materials with Defect Passivation Effect for Highly Efficient Inverted Quasi‐2D Perovskite Solar Cells

[1]  Yongzhen Wu,et al.  Minimizing buried interfacial defects for efficient inverted perovskite solar cells , 2023, Science.

[2]  Kwanghee Lee,et al.  Efficient and Stable Quasi‐2D Ruddlesden–Popper Perovskite Solar Cells by Tailoring Crystal Orientation and Passivating Surface Defects , 2023, Advanced materials.

[3]  T. Shin,et al.  Controlled growth of perovskite layers with volatile alkylammonium chlorides , 2023, Nature.

[4]  W. Tsoi,et al.  Highly efficient p-i-n perovskite solar cells that endure temperature variations , 2023, Science.

[5]  Xianglang Sun,et al.  Green-solvent Processable Dopant-free Hole Transporting Materials for Inverted Perovskite Solar Cells. , 2023, Angewandte Chemie.

[6]  Shangfeng Yang,et al.  Backbone Engineering Enables Highly Efficient Polymer Hole‐Transporting Materials for Inverted Perovskite Solar Cells , 2022, Advanced materials.

[7]  Tianshi Qin,et al.  Underlying Interface Defect Passivation and Charge Transfer Enhancement via Sulfonated Hole-Transporting Materials for Efficient Inverted Perovskite Solar Cells. , 2022, ACS applied materials & interfaces.

[8]  Fuzhi Huang,et al.  Recent progress in perovskite solar cells: from device to commercialization , 2022, Science China Chemistry.

[9]  Xudong Yang,et al.  Oriented Low‐n Ruddlesden‐Popper Formamidinium‐Based Perovskite for Efficient and Air Stable Solar Cells , 2022, Advanced Energy Materials.

[10]  Jianqi Zhang,et al.  Inhibiting the Growth of 1D Intermediates in Quasi‐2D Ruddlesden−Popper Perovskites , 2022, Advanced Functional Materials.

[11]  Bryon W. Larson,et al.  Surface reaction for efficient and stable inverted perovskite solar cells , 2022, Nature.

[12]  S. De Wolf,et al.  Organic Hole‐Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells , 2022, Advanced materials.

[13]  J. Guillemoles,et al.  Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces , 2022, Nature Communications.

[14]  W. Choy,et al.  Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective , 2022, Advanced Energy Materials.

[15]  Xiaodong Li,et al.  Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells , 2022, Science.

[16]  Weihong Zhu,et al.  Improving Contact and Passivation of Buried Interface for High‐Efficiency and Large‐Area Inverted Perovskite Solar Cells , 2021, Advanced Functional Materials.

[17]  Yana Vaynzof,et al.  23.7% Efficient inverted perovskite solar cells by dual interfacial modification , 2021, Science advances.

[18]  Jinsong Huang,et al.  Stabilizing perovskite-substrate interfaces for high-performance perovskite modules , 2021, Science.

[19]  Jinsong Huang,et al.  Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability , 2021, Nature Energy.

[20]  Y. Qi,et al.  Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability , 2021, Science.

[21]  Yongqian Shi,et al.  Imide‐Functionalized Triarylamine‐Based Donor‐Acceptor Polymers as Hole Transporting Layers for High‐Performance Inverted Perovskite Solar Cells , 2021, Advanced Functional Materials.

[22]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[23]  Xiaoliang Zhang,et al.  Multifunctional Chemical Bridge and Defect Passivation for Highly Efficient Inverted Perovskite Solar Cells , 2021 .

[24]  Jinsong Huang,et al.  Iodine reduction for reproducible and high-performance perovskite solar cells and modules , 2021, Science Advances.

[25]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[26]  Zongping Shao,et al.  High‐Quality Ruddlesden–Popper Perovskite Film Formation for High‐Performance Perovskite Solar Cells , 2021, Advanced materials.

[27]  A. Jen,et al.  Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-based Dopant-free Polymer Semiconductor. , 2020, Angewandte Chemie.

[28]  Xianglang Sun,et al.  Recent Advances of Dopant-Free Polymer Hole-Transporting Materials for Perovskite Solar Cells , 2020 .

[29]  Linghai Xie,et al.  Non‐Conjugated Polymer Based on Polyethylene Backbone as Dopant‐Free Hole‐Transporting Material for Efficient and Stable Inverted Quasi‐2D Perovskite Solar Cells , 2020 .

[30]  Yuanhui Sun,et al.  Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction , 2020 .

[31]  Sagar M. Jain,et al.  Development of Dopant‐Free Organic Hole Transporting Materials for Perovskite Solar Cells , 2020, Advanced Energy Materials.

[32]  Zhenghong Lu,et al.  Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells , 2020 .

[33]  Ruixia Yang,et al.  Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications , 2019, Angewandte Chemie.

[34]  Kai Zhu,et al.  Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers , 2018, Nature Energy.

[35]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[36]  Yu Cao,et al.  Oriented Quasi‐2D Perovskites for High Performance Optoelectronic Devices , 2018, Advanced materials.

[37]  Weihua Tang,et al.  Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells , 2018, Nano Energy.

[38]  Jingjing Zhao,et al.  Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules , 2018 .

[39]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[40]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[41]  Jinsong Huang,et al.  Understanding the physical properties of hybrid perovskites for photovoltaic applications , 2017 .

[42]  C. Brabec,et al.  Exploring the Limiting Open‐Circuit Voltage and the Voltage Loss Mechanism in Planar CH3NH3PbBr3 Perovskite Solar Cells , 2016 .

[43]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[44]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.