Key ITER plasma edge and plasma–material interaction issues

[1]  F. Kappler,et al.  Erosion of ITER-FEAT vertical targets during off-normal events , 2001 .

[2]  F. Kappler,et al.  Vertical target and FW erosion during off-normal events and impurity production and transport during ELMs typical for ITER-FEAT , 2001 .

[3]  P. C. Stangeby,et al.  Calculation of observable quantities using a divertor impurity interpretive code, DIVIMP , 1992 .

[4]  A. Loarte,et al.  The impact of ELMs on the ITER divertor , 1998 .

[5]  C. H. Skinner,et al.  Plasma{material interactions in current tokamaks and their implications for next step fusion reactors , 2001 .

[6]  H. R. Strauss,et al.  Magnetohydrodynamic effects on pellet injection in tokamaks , 1998 .

[7]  T. W. Petrie,et al.  ELM energy scaling in DIII-D , 2002 .

[8]  V. Philipps,et al.  First wall material issues and related activities at JET , 2002 .

[9]  D. Whyte,et al.  Towards an improved understanding of the relationship between plasma edge and materials issues in a next-step fusion device , 2001 .

[10]  A. Hassanein,et al.  Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities , 1999 .

[11]  Jeffrey N. Brooks,et al.  Hydrocarbon transport in the MkIIa divertor of JET , 2003 .

[12]  S. Chiocchio,et al.  Plasma wall interactions in ITER , 1997 .

[13]  W. Jacob,et al.  Surface reactions of hydrocarbon radicals: suppression of the re-deposition in fusion experiments via a divertor liner , 2001 .

[14]  B. V. Kuteev Hydrogen pellet ablation and acceleration by current in high temperature plasmas , 1995 .

[15]  D. A. Alman,et al.  Erosion/redeposition analysis : status of modeling and code validation for semi-detached tokamak edge plasmas. , 1999 .

[16]  R. Tivey,et al.  Design of a radiative semi-transparent liner for the ITER divertor cassette , 2000 .

[17]  M. Rosenbluth,et al.  Assessment of disruption and disruption-related physics basis for ITER , 1997, 17th IEEE/NPSS Symposium Fusion Engineering (Cat. No.97CH36131).

[18]  G. Pautasso,et al.  Energy flux to the ASDEX-Upgrade diverter plates determined by thermography and calorimetry , 1995 .

[19]  A. A. Haasz,et al.  Isotopic effects in hydrocarbon formation due to low-energy H+/D+ impact on graphite , 1998 .

[20]  R. Neu,et al.  Conclusions about the use of tungsten in the divertor of ASDEX Upgrade , 1999 .

[21]  G. Janeschitz,et al.  Erosion of plasma-facing components in ITER☆ , 2002 .

[22]  J. Manickam,et al.  Disappearance of giant ELMs and appearance of minute grassy ELMs in JT-60U high-triangularity discharges , 2000 .

[23]  W. Treutterer,et al.  Type II ELMy H modes on ASDEX Upgrade with good confinement at high density , 2001 .

[24]  J. Stober,et al.  Assessment of erosion and tritium codeposition in ITER-FEAT , 2001 .

[25]  V. Mukhovatov,et al.  The requirements of a next step large steady state tokamak , 2000 .

[26]  A. Kukushkin,et al.  Divertor modelling and extrapolation to reactor conditions , 2002 .

[27]  G. Janeschitz Plasma–wall interaction issues in ITER , 2001 .

[28]  D. Coster,et al.  Critical issues in divertor optimisation for ITER–FEAT , 2001 .

[29]  S. Luckhardt,et al.  Experimental evidence of intermittent convection in the edge of magnetic confinement devices. , 2001, Physical review letters.

[30]  M. Sugihara,et al.  Comparison of ITER performance predicted by semi-empirical and theory-based transport models , 2003 .

[31]  A. Polevoi,et al.  Simplified mass ablation and relocation treatment for pellet injection optimization , 2001 .

[32]  V. Barabash,et al.  Selection of plasma-facing materials in next-step fusion devices , 2002, Proceedings of the 19th IEEE/IPSS Symposium on Fusion Engineering. 19th SOFE (Cat. No.02CH37231).

[33]  J. Ahn,et al.  Boundary plasma and divertor phenomena in MAST , 2002 .

[34]  G. Janeschitz,et al.  Overview of the engineering design of ITER divertor , 2001 .

[35]  A. A. Haasz,et al.  In-vessel tritium retention and removal in ITER-FEAT , 1998 .

[36]  A. Loarte,et al.  Improved performance of ELMy H-modes at high density by plasma shaping in JET , 2002 .

[37]  D. A. Humphreys,et al.  Disruption mitigation studies in DIII-D , 1999 .

[38]  F. Kappler,et al.  A 2-D Numerical Simulation of ITER-FEAT Disruptive Hot Plasma-Wall Interaction and Model Validation against Disruption Simulation Experiments , 2001 .

[39]  H. Zohm,et al.  DIVERTOR HEAT AND PARTICLE FLUX DUE TO ELMs IN DIII-D AND ASDEX-UPGRADE , 1997 .

[40]  K. Fournier,et al.  SPECTROSCOPIC INVESTIGATIONS OF TUNGSTEN IN THE EUV REGION AND THE DETERMINATION OF ITS CONCENTRATION IN TOKAMAKS , 1998 .

[41]  Jeffrey N. Brooks,et al.  Modeling of sputtering erosion/redeposition—status and implications for fusion design , 2002 .

[42]  G. Federici,et al.  RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part II: Analysis of ITER plasma facing components , 1997 .

[43]  I. Mazul,et al.  Laboratory study of the transport and condensation of hydrocarbon radicals and its consequences for mitigating the tritium inventory in the ITER-FEAT divertor , 2001 .

[44]  G. Federici,et al.  RACLETTE: a Model for Evaluating the Thermal Response of Plasma Facing Components to Slow High Power Plasma Transients. Part I: Theory and Description of Model Capabilities , 1997 .