High speed semiconductor laser design and performance

Abstract The design of semiconductor lasers for efficient response to direct current modulation at microwave and millimeter wave frequencies is described. A rate equation analysis is used to relate the effect of current modulation on laser intensity and frequency. This analysis is also used to relate the 0, 3 and 6 dB frequencies to the peak frequency and to predict the maximum bandwidth obtainable in a single longitudinal mode laser. The design of structures and packaging for millimeter wave bandwidths is also described.

[1]  L. Figueroa,et al.  High-frequency characteristics of GaAlAs injection lasers , 1982 .

[2]  R. Lang,et al.  Suppression of the relaxation oscillation in the modulated output of semiconductor lasers , 1976 .

[3]  K Furuya,et al.  Reduction of resonancelike peak in direct modulation due to carrier diffusion in injection laser. , 1978, Applied optics.

[4]  John E. Bowers,et al.  High-frequency constricted mesa lasers , 1985 .

[5]  L. Stulz,et al.  Low-threshold InGaAsP ridge waveguide lasers at 1.3 µm , 1983 .

[6]  T. Bridges,et al.  Low-threshold high-speed 1.55 μm vapour phase transported buried heterostructure lasers (VPTBH) , 1984 .

[7]  W. Powazinik,et al.  Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers , 1985 .

[8]  M. Adams,et al.  Detailed calculations of transient effects in semiconductor injection lasers , 1977 .

[9]  H. Burkhard,et al.  Three- and four-layer LPE InGaAs(P) mushroom stripe lasers for λ = 1.30, 1.54, and 1.66 µm , 1985 .

[10]  R. Linke Direct gigabit modulation of injection lasers - Structure-dependent speed limitations , 1984, Journal of Lightwave Technology.

[11]  Kam Y. Lau,et al.  Direct amplitude modulation of short‐cavity GaAs lasers up to X‐band frequencies , 1983 .

[12]  H. Haug Quantum-Mechanical Rate Equations for Semiconductor Lasers , 1969 .

[13]  High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers , 1985 .

[14]  High-frequency small-signal modulation characteristics of short-cavity InGaAsP lasers , 1984 .

[15]  T. Koch,et al.  Effect of nonlinear gain reduction on semiconductor laser wavelength chirping , 1986 .

[16]  Rodney S. Tucker,et al.  Intermodulation and harmonic distortion in InGaAsP lasers , 1985 .

[17]  John E. Bowers,et al.  Propagation delays and transition times in pulse-modulated semiconductor lasers , 1986 .

[18]  Chin B. Su,et al.  Effect of doping level on the gain constant and modulation bandwidth of InGaAsP semiconductor lasers , 1984 .

[19]  T. Koch,et al.  Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .

[20]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[21]  Yasuhiko Arakawa,et al.  Quantum noise and dynamics in quantum well and quantum wire lasers , 1984 .

[22]  U. Koren,et al.  Wide-bandwidth modulation of three-channel buried-crescent laser diodes , 1985 .

[23]  John E. Bowers,et al.  High-speed InGaAsP constricted-mesa lasers , 1986 .

[24]  Kam Y. Lau,et al.  11‐GHz direct modulation bandwidth GaAlAs window laser on semi‐insulating substrate operating at room temperature , 1984 .

[25]  Yoshihisa Yamamoto,et al.  Direct frequency modulation in AlGaAs semiconductor lasers , 1982 .

[26]  Kam Y. Lau,et al.  Ultimate frequency response of GaAs injection lasers , 1981 .

[27]  Yasuharu Suematsu,et al.  Suppression of relaxation oscillation in light output of injection lasers by electrical resonance circuit , 1977 .

[28]  R. B. Lauer,et al.  12.5‐GHz direct modulation bandwidth of vapor phase regrown 1.3‐μm InGaAsP buried heterostructure lasers , 1985 .

[29]  A. R. Goodwin,et al.  Direct modulation of double-heterostructure lasers at rates up to 1 Gbit/s , 1973 .

[30]  D. J. Channin,et al.  Effect of gain saturation on injection laser switching , 1979 .

[31]  F. Koyama,et al.  Analysis of dynamic spectral width of dynamic-single-mode (DSM) lasers and related transmission bandwidth of single-mode fibers , 1985, IEEE Journal of Quantum Electronics.

[32]  G. Lasher,et al.  Analysis of a proposed bistable injection laser , 1964 .

[33]  H. Yanai,et al.  The phase shift of the light output in sinusoidally modulated semiconductor lasers , 1979 .

[34]  John E. Bowers Millimetre-wave response of InGaAsP lasers , 1985 .

[35]  J. Walpole,et al.  Q-switched semiconductor diode lasers , 1983 .

[36]  A. Yariv,et al.  Intermodulation distortion in a directly modulated semiconductor injection laser , 1984 .

[37]  Rodney S. Tucker,et al.  High-speed modulation of semiconductor lasers , 1985 .

[38]  K. Vahala,et al.  Detuned loading in coupled cavity semiconductor lasers—effect on quantum noise and dynamics , 1984 .

[39]  Rodney S. Tucker,et al.  Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser , 1983 .

[40]  D. J. Pope,et al.  Microwave Circuit Models of Semiconductor Injection Lasers , 1982 .

[41]  G. Arnold,et al.  Modulation behavior of semiconductor injection lasers , 1977 .

[42]  N. A. Olsson,et al.  MICROWAVE INTENSITY AND FREQUENCY MODULATION OF HETEROEPITAXIAL-RIDGE-OVERGROWN DISTRIBUTED FEEDBACK LASERS. , 1985 .

[43]  T. Paoli Optical response of a stripe-geometry junction laser to sinusoidal current modulation at 1.2 GHz , 1981 .

[44]  K. Konnerth,et al.  DELAY BETWEEN CURRENT PULSE AND LIGHT EMISSION OF A GALLIUM ARSENIDE INJECTION LASER , 1964 .

[45]  Rodney S. Tucker,et al.  Large-signal switching transients in index-guided semiconductor lasers , 1984 .

[46]  Frank Stern,et al.  Calculated spectral dependence of gain in excited GaAs , 1976 .

[47]  P. M. Boers,et al.  Dynamic behaviour of semiconductor lasers , 1975 .

[48]  D. A. Kleinman,et al.  The maser rate equations and spiking , 1964 .

[49]  U. Koren,et al.  Heterojunction phototransistors on n-channelled semi-insulating InP substrates , 1985 .

[50]  L. D. Westbrook Dispersion of linewidth-broadening factor in 1.5 μm laser diodes , 1985 .

[51]  J. Buus Dynamic line broadening of semiconductor lasers modulated at high frequencies , 1985 .

[52]  John E. Bowers,et al.  26.5 GHz bandwidth InGaAsP lasers with tight optical confinement , 1985 .