Benchmarking Blocking Algorithms for Web Entities
暂无分享,去创建一个
[1] Renée J. Miller,et al. Record linkage for web data , 2012 .
[2] Dongwon Lee,et al. HARRA: fast iterative hashed record linkage for large-scale data collections , 2010, EDBT '10.
[3] Wolfgang Nejdl,et al. Meta-Blocking: Taking Entity Resolutionto the Next Level , 2014, IEEE Transactions on Knowledge and Data Engineering.
[4] Wen-Syan Li,et al. String Similarity Joins: An Experimental Evaluation , 2014, Proc. VLDB Endow..
[5] Heiner Stuckenschmidt,et al. Benchmarking Matching Applications on the Semantic Web , 2011, ESWC.
[6] Serge Abiteboul,et al. PARIS: Probabilistic Alignment of Relations, Instances, and Schema , 2011, Proc. VLDB Endow..
[7] Markus Nentwig,et al. A survey of current Link Discovery frameworks , 2016, Semantic Web.
[8] Peter Christen,et al. A Survey of Indexing Techniques for Scalable Record Linkage and Deduplication , 2012, IEEE Transactions on Knowledge and Data Engineering.
[9] George Papastefanatos,et al. Parallel meta-blocking: Realizing scalable entity resolution over large, heterogeneous data , 2015, 2015 IEEE International Conference on Big Data (Big Data).
[10] Raghav Kaushik,et al. Efficient exact set-similarity joins , 2006, VLDB.
[11] Ekaterini Ioannou,et al. On Generating Benchmark Data for Entity Matching , 2012, Journal on Data Semantics.
[12] Avigdor Gal,et al. MFIBlocks: An effective blocking algorithm for entity resolution , 2013, Inf. Syst..
[13] Nilesh N. Dalvi,et al. Large-Scale Collective Entity Matching , 2011, Proc. VLDB Endow..
[14] Gautam Shroff,et al. Graph-Parallel Entity Resolution using LSH & IMM , 2014, EDBT/ICDT Workshops.
[15] Christos Faloutsos,et al. V-SMART-Join: A Scalable MapReduce Framework for All-Pair Similarity Joins of Multisets and Vectors , 2012, Proc. VLDB Endow..
[16] Peter Christen,et al. Data Matching , 2012, Data-Centric Systems and Applications.
[17] Andreas Thor,et al. Evaluation of entity resolution approaches on real-world match problems , 2010, Proc. VLDB Endow..
[18] Heiko Paulheim,et al. Adoption of the Linked Data Best Practices in Different Topical Domains , 2014, SEMWEB.
[19] Roberto J. Bayardo,et al. Scaling up all pairs similarity search , 2007, WWW '07.
[20] Alan M. Frieze,et al. Min-Wise Independent Permutations , 2000, J. Comput. Syst. Sci..
[21] Daniel P. Miranker,et al. An Unsupervised Algorithm for Learning Blocking Schemes , 2013, 2013 IEEE 13th International Conference on Data Mining.
[22] Andrew McCallum,et al. Efficient clustering of high-dimensional data sets with application to reference matching , 2000, KDD '00.
[23] Vasilis Efthymiou,et al. Entity resolution in the web of data , 2013, Entity Resolution in the Web of Data.
[24] Divesh Srivastava,et al. Big data integration , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).
[25] Nectarios Koziris,et al. ~okeanos: Building a Cloud, Cluster by Cluster , 2013, IEEE Internet Computing.
[26] Gjergji Kasneci,et al. SIGMa: simple greedy matching for aligning large knowledge bases , 2012, KDD.
[27] Vasilis Efthymiou,et al. Big data entity resolution: From highly to somehow similar entity descriptions in the Web , 2015, 2015 IEEE International Conference on Big Data (Big Data).
[28] Hector Garcia-Molina,et al. Pay-As-You-Go Entity Resolution , 2013, IEEE Transactions on Knowledge and Data Engineering.
[29] Jeffrey Xu Yu,et al. Efficient similarity joins for near-duplicate detection , 2011, TODS.
[30] Georgia Koutrika,et al. Entity resolution with iterative blocking , 2009, SIGMOD Conference.
[31] Jennifer Widom,et al. Swoosh: a generic approach to entity resolution , 2008, The VLDB Journal.
[32] Surajit Chaudhuri,et al. A Primitive Operator for Similarity Joins in Data Cleaning , 2006, 22nd International Conference on Data Engineering (ICDE'06).
[33] Renée J. Miller,et al. Framework for Evaluating Clustering Algorithms in Duplicate Detection , 2009, Proc. VLDB Endow..
[34] Lise Getoor,et al. Collective entity resolution in relational data , 2007, TKDD.
[35] Claudia Niederée,et al. Beyond 100 million entities: large-scale blocking-based resolution for heterogeneous data , 2012, WSDM '12.
[36] Claudia Niederée,et al. A Blocking Framework for Entity Resolution in Highly Heterogeneous Information Spaces , 2013, IEEE Transactions on Knowledge and Data Engineering.