Constant Composition Distribution Matching

Distribution matching transforms independent and Bernoulli(1/2) distributed input bits into a sequence of output symbols with a desired distribution. Fixed-to-fixed length, invertible, and low complexity encoders and decoders based on constant composition and arithmetic coding are presented. The encoder achieves the maximum rate, namely, the entropy of the desired distribution, asymptotically in the blocklength. Furthermore, the normalized divergence of the encoder output and the desired distribution goes to zero in the blocklength.

[1]  Ning Cai,et al.  Probabilistic Capacity and Optimal Coding for Asynchronous Channel , 2007, 2007 IEEE Information Theory Workshop.

[2]  Frank R. Kschischang,et al.  Optimal nonuniform signaling for Gaussian channels , 1993, IEEE Trans. Inf. Theory.

[3]  Rüdiger L. Urbanke,et al.  How to achieve the capacity of asymmetric channels , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[4]  Rudolf Mathar,et al.  Matching Dyadic Distributions to Channels , 2010, 2011 Data Compression Conference.

[5]  Imre Csiszár,et al.  Information Theory and Statistics: A Tutorial , 2004, Found. Trends Commun. Inf. Theory.

[6]  Georg Böcherer,et al.  Fixed-to-variable length distribution matching , 2013, 2013 IEEE International Symposium on Information Theory.

[7]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[8]  Bernhard C. Geiger,et al.  Optimal Quantization for Distribution Synthesis , 2013, IEEE Transactions on Information Theory.

[9]  G. David Forney,et al.  Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..

[10]  Georg Böcherer,et al.  Block-to-Block Distribution Matching , 2013, ArXiv.

[11]  Rudolf Mathar,et al.  Operating LDPC codes with zero shaping gap , 2011, 2011 IEEE Information Theory Workshop.

[12]  G. Blelloch Introduction to Data Compression * , 2022 .

[13]  Patrick Schulte,et al.  Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation , 2015, IEEE Transactions on Communications.

[14]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[15]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[16]  Imre Csiszár,et al.  Information theory and statistics , 2013 .

[17]  Georg Böcherer,et al.  Arithmetic Distribution Matching , 2014, ArXiv.

[18]  Georg Böcherer,et al.  Informational divergence and entropy rate on rooted trees with probabilities , 2013, 2014 IEEE International Symposium on Information Theory.

[19]  Tenkasi V. Ramabadran,et al.  A coding scheme for m-out-of-n codes , 1990, IEEE Trans. Commun..

[20]  Rana Ali Amjad Coding Theorems and Algorithms for Simulation of Discrete Memoryless Sources , 2014 .

[21]  Patrick Schulte,et al.  Bandwidth Efficient and Rate-Compatible Low-Density Parity-Check Coded Modulation , 2015, ArXiv.

[22]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .