Kernel Methods for Measuring Independence
暂无分享,去创建一个
Bernhard Schölkopf | Alexander J. Smola | Arthur Gretton | Ralf Herbrich | Olivier Bousquet | B. Schölkopf | O. Bousquet | Alex Smola | A. Gretton | R. Herbrich | B. Scholkopf
[1] E. Mourier. Éléments aléatoires dans un espace de Banach , 1953 .
[2] Ronald N. Bracewell,et al. The Fourier Transform and Its Applications , 1966 .
[3] C. Baker. Mutual Information for Gaussian Processes , 1970 .
[4] C. Baker. Joint measures and cross-covariance operators , 1973 .
[5] David G. Stork,et al. Pattern Classification , 1973 .
[6] Bruno O. Shubert,et al. Random variables and stochastic processes , 1979 .
[7] R. Clarke,et al. Theory and Applications of Correspondence Analysis , 1985 .
[8] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[9] J. Friedman,et al. Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .
[10] John G. Proakis,et al. Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..
[11] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[12] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[13] B. Silverman,et al. Canonical correlation analysis when the data are curves. , 1993 .
[14] S. Hyakin,et al. Neural Networks: A Comprehensive Foundation , 1994 .
[15] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[16] Terrence J. Sejnowski,et al. An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.
[17] Andrzej Cichocki,et al. A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.
[18] A. Hyvärinen,et al. One-unit contrast functions for independent component analysis: a statistical analysis , 1997 .
[19] Eric Moulines,et al. A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..
[20] Philippe Garat,et al. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach , 1997, IEEE Trans. Signal Process..
[21] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[22] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[23] T. Ens,et al. Blind signal separation : statistical principles , 1998 .
[24] Jean-François Cardoso,et al. Multidimensional independent component analysis , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).
[25] J. Dauxois,et al. Nonlinear canonical analysis and independence tests , 1998 .
[26] Moeness G. Amin,et al. Blind source separation based on time-frequency signal representations , 1998, IEEE Trans. Signal Process..
[27] Alexander J. Smola,et al. Learning with kernels , 1998 .
[28] Aapo Hyvärinen,et al. Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.
[29] A. J. Bell,et al. A Unifying Information-Theoretic Framework for Independent Component Analysis , 2000 .
[30] Christian Jutten,et al. Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..
[31] Colin Fyfe,et al. Kernel and Nonlinear Canonical Correlation Analysis , 2000, IJCNN.
[32] Katya Scheinberg,et al. Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..
[33] Dinh Tuan Pham,et al. BLIND SOURCE SEPARATION IN POST NONLINEAR MIXTURES , 2001 .
[34] Ingo Steinwart,et al. On the Influence of the Kernel on the Consistency of Support Vector Machines , 2002, J. Mach. Learn. Res..
[35] Roman Rosipal,et al. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space , 2002, J. Mach. Learn. Res..
[36] Nello Cristianini,et al. Spectral Kernel Methods for Clustering , 2001, NIPS.
[37] Johan A. K. Suykens,et al. Kernel Canonical Correlation Analysis and Least Squares Support Vector Machines , 2001, ICANN.
[38] Xiao-Long Zhu,et al. Adaptive RLS algorithm for blind source separation using a natural gradient , 2002, IEEE Signal Processing Letters.
[39] Andrzej Cichocki,et al. Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .
[40] L. Shepp. Probability Essentials , 2002 .
[41] Andrzej Cichocki,et al. Adaptive blind signal and image processing , 2002 .
[42] Michael I. Jordan,et al. Tree-dependent Component Analysis , 2002, UAI.
[43] C. Jutten,et al. QUADRATIC DEPENDENCE MEASURE FOR NONLINEAR BLIND SOURCES SEPARATION , 2003 .
[44] Liam Paninski,et al. Estimation of Entropy and Mutual Information , 2003, Neural Computation.
[45] C. Jutten,et al. On the separability of nonlinear mixtures of temporally correlated sources , 2003, IEEE Signal Processing Letters.
[46] Michael I. Jordan,et al. Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..
[47] Alexander J. Smola,et al. The kernel mutual information , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..
[48] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2003, ICTAI.
[49] John W. Fisher,et al. ICA Using Spacings Estimates of Entropy , 2003, J. Mach. Learn. Res..
[50] Arthur Gretton. Kernel Methods for Classification and Signal Separation (PhD thesis) , 2003 .
[51] Motoaki Kawanabe,et al. Kernel-Based Nonlinear Blind Source Separation , 2003, Neural Computation.
[52] A. Gretton. Kernel Methods for Classification and Signal Separation , 2003 .
[53] Alexander Kraskov,et al. Least-dependent-component analysis based on mutual information. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[54] David R. Hardoon,et al. KCCA for fMRI Analysis , 2004 .
[55] O. Bousquet,et al. Kernels, Associated Structures and Generalizations , 2004 .
[56] Gökhan BakIr,et al. Multivariate Regression with Stiefel Constraints , 2004 .
[57] Michael I. Jordan,et al. Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..
[58] Gilles Blanchard,et al. Statistical properties of Kernel Prinicipal Component Analysis , 2019 .
[59] A. Tsybakov,et al. Nonparametric independent component analysis , 2004 .
[60] N. Logothetis,et al. Behaviour and Convergence of the Constrained Covariance , 2004 .
[61] Dinh-Tuan Pham,et al. Fast algorithms for mutual information based independent component analysis , 2004, IEEE Transactions on Signal Processing.
[62] Kenji Fukumizu,et al. Consistency of Kernel Canonical Correlation Analysis , 2005 .
[63] Bernhard Schölkopf,et al. Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.
[64] Fabian J. Theis,et al. Blind signal separation into groups of dependent signals using joint block diagonalization , 2005, 2005 IEEE International Symposium on Circuits and Systems.
[65] P. Bickel,et al. Consistent independent component analysis and prewhitening , 2005, IEEE Transactions on Signal Processing.
[66] Bernhard Schölkopf,et al. Kernel Constrained Covariance for Dependence Measurement , 2005, AISTATS.
[67] Shotaro Akaho,et al. A kernel method for canonical correlation analysis , 2006, ArXiv.