Efficient Monte Carlo based incremental statistical timing analysis
暂无分享,去创建一个
[1] K. Ravindran,et al. First-Order Incremental Block-Based Statistical Timing Analysis , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[2] Wei-Liem Loh. On Latin hypercube sampling , 1996 .
[3] Reuven Y. Rubinstein,et al. Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.
[4] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[5] M. Stein. Large sample properties of simulations using latin hypercube sampling , 1987 .
[6] Sachin S. Sapatnekar,et al. Statistical Timing Analysis Considering Spatial Correlations using a Single Pert-Like Traversal , 2003, ICCAD 2003.
[7] Lou Scheffer. The Count of Monte Carlo , 2004 .
[8] Rob A. Rutenbar,et al. From Finance to Flip Flops: A Study of Fast Quasi-Monte Carlo Methods from Computational Finance Applied to Statistical Circuit Analysis , 2007, 8th International Symposium on Quality Electronic Design (ISQED'07).
[9] David Blaauw,et al. Parametric yield maximization using gate sizing based on efficient statistical power and delay gradient computation , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..
[10] Rajiv V. Joshi,et al. Mixture importance sampling and its application to the analysis of SRAM designs in the presence of rare failure events , 2006, 2006 43rd ACM/IEEE Design Automation Conference.
[11] F. Brglez,et al. A neutral netlist of 10 combinational benchmark circuits and a target translator in FORTRAN , 1985 .
[12] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[13] Alper Demir,et al. Smart Monte Carlo for Yield Estimation , 2006 .
[14] Noel Menezes,et al. Statistical timing analysis based on a timing yield model , 2004, Proceedings. 41st Design Automation Conference, 2004..
[15] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[16] R. Kielbasa,et al. Worst case efficiency of Latin hypercube sampling Monte Carlo (LHSMC) yield estimator of electrical circuits , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.
[17] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[18] P. Gruber,et al. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .