Cryogenic measurements of mechanical loss of high-reflectivity coating and estimation of thermal noise.

We report on low-frequency measurements of the mechanical loss of a high-quality (transmissivity T<5 ppm at λ(0)=1064 nm, absorption loss <0.5 ppm) multilayer dielectric coating of ion-beam-sputtered fused silica and titanium-doped tantala in the 10-300 K temperature range. A useful parameter for the computation of coating thermal noise on different substrates is derived as a function of temperature and frequency.

[1]  A. Tünnermann,et al.  Investigation of mechanical losses of thin silicon flexures at low temperatures , 2010, 1003.2893.

[2]  Christophe Michel,et al.  Realization of low-loss mirrors with sub-nanometer flatness for future gravitational wave detectors , 2012, Optical Systems Design.

[3]  L. Pinard,et al.  The new cryogenic facility at LMA , 2012 .

[4]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[5]  M. Abernathy Mechanical properties of coating materials for use in the mirrors of interferometric gravitational wave detectors , 2012 .

[6]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[7]  M M Fejer,et al.  Effect of heat treatment on mechanical dissipation in Ta2O5 coatings , 2010, 1010.0577.

[8]  L. Pinard,et al.  A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors , 2010 .

[9]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[10]  F. Marchesoni,et al.  Low-frequency losses in silica glass at low temperature , 2009 .

[11]  M. Fejer,et al.  Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2 , 2009 .

[12]  F. Marchesoni,et al.  Low-frequency internal friction in silica glass , 2007 .

[13]  Sylvain Gigan,et al.  Radiation-pressure self-cooling of a micromirror in a cryogenic environment , 2007, 0705.1149.

[14]  Alban Remillieux,et al.  Titania-doped tantala/silica coatings for gravitational-wave detection , 2006 .

[15]  Juri Agresti,et al.  Optimized multilayer dielectric mirror coatings for gravitational wave interferometers , 2006, SPIE Optics + Photonics.

[16]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[17]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[18]  K. Kuroda,et al.  Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection , 2006, gr-qc/0601031.

[19]  M. M. Fejer,et al.  Mechanical Dissipation in Silicon Flexures , 2005, gr-qc/0504134.

[20]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[21]  Martin M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[22]  Y. Levin Internal thermal noise in the LIGO test masses: A direct approach , 1997, gr-qc/9707013.

[23]  C. Speake,et al.  Stress-dependent damping in CuBe torsion and flexure suspensions at stresses up to 1.1 GPa , 1995 .

[24]  P. Saulson,et al.  Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.

[25]  Alan W. Hoffman,et al.  Measurements of the mechanical Q of single-crystal silicon at low temperatures , 1978 .