Cryogenic measurements of mechanical loss of high-reflectivity coating and estimation of thermal noise.
暂无分享,去创建一个
I. Martin | L. Pinard | S. Rowan | G. Cagnoli | J. Degallaix | R. Flaminio | M. Granata | J. Hennig | J. Hough | C. Michel | K. Craig | M. Hart | N. Morgado | I. MacLaren | D. Forest | W. Cunningham | C. Carcy | Salim Otmani | M. Hart
[1] A. Tünnermann,et al. Investigation of mechanical losses of thin silicon flexures at low temperatures , 2010, 1003.2893.
[2] Christophe Michel,et al. Realization of low-loss mirrors with sub-nanometer flatness for future gravitational wave detectors , 2012, Optical Systems Design.
[3] L. Pinard,et al. The new cryogenic facility at LMA , 2012 .
[4] Kentaro Somiya,et al. Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.
[5] M. Abernathy. Mechanical properties of coating materials for use in the mirrors of interferometric gravitational wave detectors , 2012 .
[6] Lei Chen,et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.
[7] M M Fejer,et al. Effect of heat treatment on mechanical dissipation in Ta2O5 coatings , 2010, 1010.0577.
[8] L. Pinard,et al. A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors , 2010 .
[9] G. M. Harry,et al. Advanced LIGO: the next generation of gravitational wave detectors , 2010 .
[10] F. Marchesoni,et al. Low-frequency losses in silica glass at low temperature , 2009 .
[11] M. Fejer,et al. Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2 , 2009 .
[12] F. Marchesoni,et al. Low-frequency internal friction in silica glass , 2007 .
[13] Sylvain Gigan,et al. Radiation-pressure self-cooling of a micromirror in a cryogenic environment , 2007, 0705.1149.
[14] Alban Remillieux,et al. Titania-doped tantala/silica coatings for gravitational-wave detection , 2006 .
[15] Juri Agresti,et al. Optimized multilayer dielectric mirror coatings for gravitational wave interferometers , 2006, SPIE Optics + Photonics.
[16] T. Briant,et al. Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.
[17] S. Gigan,et al. Self-cooling of a micromirror by radiation pressure , 2006, Nature.
[18] K. Kuroda,et al. Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection , 2006, gr-qc/0601031.
[19] M. M. Fejer,et al. Mechanical Dissipation in Silicon Flexures , 2005, gr-qc/0504134.
[20] Kenji Numata,et al. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.
[21] Martin M. Fejer,et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.
[22] Y. Levin. Internal thermal noise in the LIGO test masses: A direct approach , 1997, gr-qc/9707013.
[23] C. Speake,et al. Stress-dependent damping in CuBe torsion and flexure suspensions at stresses up to 1.1 GPa , 1995 .
[24] P. Saulson,et al. Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.
[25] Alan W. Hoffman,et al. Measurements of the mechanical Q of single-crystal silicon at low temperatures , 1978 .