A Real-time D-bar Algorithm for 2-D Electrical Impedance Tomography Data.

The aim of this paper is to show the feasibility of the D-bar method for real-time 2-D EIT reconstructions. A fast implementation of the D-bar method for reconstructing conductivity changes on a 2-D chest-shaped domain is described. Cross-sectional difference images from the chest of a healthy human subject are presented, demonstrating what can be achieved in real time. The images constitute the first D-bar images from EIT data on a human subject collected on a pairwise current injection system.

[1]  S Abboud,et al.  Monitoring lung fluid content in CHF patients under intravenous diuretics treatment using bio-impedance measurements , 2007, Physiological measurement.

[2]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[3]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[4]  O. Hoekstra,et al.  Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning. , 1998, Physiological measurement.

[5]  J L Mueller,et al.  2D D-bar reconstructions of human chest and tank data using an improved approximation to the scattering transform. , 2010, Physiological measurement.

[6]  Gerhard Hellige,et al.  Detection of local lung air content by electrical impedance tomography compared with electron beam CT. , 2002, Journal of applied physiology.

[7]  J. Marcus,et al.  Pulmonary perfusion measured by means of electrical impedance tomography , 1998, Physiological measurement.

[8]  Liliana Borcea,et al.  Electrical impedance tomography , 2002 .

[9]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[10]  Trevor A. York Status of electrical tomography in industrial applications , 2001, J. Electronic Imaging.

[11]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[12]  Harki Tanaka,et al.  Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. , 2004, American journal of respiratory and critical care medicine.

[13]  Samuli Siltanen,et al.  Direct electrical impedance tomography for nonsmooth conductivities , 2011 .

[14]  R. G. Lima,et al.  Real-time detection of pneumothorax using electrical impedance tomography* , 2008, Critical care medicine.

[15]  J. Marcus,et al.  Determinants of pulmonary perfusion measured by electrical impedance tomography , 2004, European Journal of Applied Physiology.

[16]  Bünyamin Yildiz,et al.  On the inverse conductivity problem , 1998, Appl. Math. Comput..

[17]  Samuli Siltanen,et al.  Numerical solution method for the dbar-equation in the plane , 2004 .

[18]  Samuli Siltanen,et al.  Numerical computation of complex geometrical optics solutions to the conductivity equation , 2010 .

[19]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[20]  J. Bronzwaer,et al.  Noninvasive assessment of right ventricular diastolic function by electrical impedance tomography. , 1997, Chest.

[21]  Raul Gonzalez Lima,et al.  Electrical impedance tomography , 2009, Current opinion in critical care.

[22]  Alexandru Tamasan,et al.  Reconstruction of Less Regular Conductivities in the Plane , 2001 .

[23]  Samuli Siltanen,et al.  Direct Reconstructions of Conductivities from Boundary Measurements , 2002, SIAM J. Sci. Comput..

[24]  Elisa Francini Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map , 2000 .

[25]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[26]  Matti Lassas,et al.  D-Bar Method for Electrical Impedance Tomography with Discontinuous Conductivities , 2007, SIAM J. Appl. Math..

[27]  Jennifer L. Mueller,et al.  Direct EIT Reconstructions of Complex Admittivities on a Chest-Shaped Domain in 2-D , 2013, IEEE Transactions on Medical Imaging.

[28]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[29]  Kim Knudsen,et al.  A new direct method for reconstructing isotropic conductivities in the plane. , 2003, Physiological measurement.

[30]  Jennifer L. Mueller,et al.  Direct 2-D Reconstructions of Conductivity and Permittivity From EIT Data on a Human Chest , 2015, IEEE Transactions on Medical Imaging.

[31]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[32]  G. Vainikko Fast Solvers of the Lippmann-Schwinger Equation , 2000 .

[33]  E. Raaijmakers,et al.  Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure. , 1999, Chest.

[34]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[35]  Jennifer L. Mueller,et al.  Effect of Domain Shape Modeling and Measurement Errors on the 2-D D-Bar Method for EIT , 2009, IEEE Transactions on Medical Imaging.

[36]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[37]  S J Hamilton,et al.  A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2D , 2012, Inverse problems.

[38]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[39]  J C Newell,et al.  Imaging cardiac activity by the D-bar method for electrical impedance tomography , 2006, Physiological measurement.

[40]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  David Isaacson,et al.  Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography , 2004, IEEE Transactions on Medical Imaging.

[43]  A. Morice,et al.  Cardiac and respiratory related electrical impedance changes in the human thorax , 1994, IEEE Transactions on Biomedical Engineering.

[44]  I Frerichs,et al.  Reproducibility of regional lung ventilation distribution determined by electrical impedance tomography during mechanical ventilation , 2007, Physiological measurement.

[45]  Peter Herrmann,et al.  Regional Lung Perfusion as Determined by Electrical Impedance Tomography in Comparison With Electron Beam CT Imaging , 2002, IEEE Transactions on Medical Imaging.