Recognizing and Interpreting the Fossils of Early Eukaryotes

[1]  A. Knoll,et al.  Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen , 2006 .

[2]  Roger E. Summons,et al.  A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia , 2003 .

[3]  Roger E. Summons,et al.  Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia , 2003 .

[4]  A. Knoll,et al.  VASE-SHAPED MICROFOSSILS FROM THE NEOPROTEROZOIC CHUAR GROUP, GRAND CANYON: A CLASSIFICATION GUIDED BY MODERN TESTATE AMOEBAE , 2003, Journal of Paleontology.

[5]  Harley H. McAdams,et al.  Generating and Exploiting Polarity in Bacteria , 2002, Science.

[6]  A. Knoll,et al.  Organic chemical differentiation within fossil plant cell walls detected with X-ray spectromicroscopy , 2002 .

[7]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[8]  A. Knoll,et al.  New Lu–Hf and Pb–Pb age constraints on the earliest animal fossils , 2002 .

[9]  W. Altermann,et al.  Atomic force microscopy of Precambrian microscopic fossils , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  W. F. Cannon,et al.  Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region , 2002 .

[11]  L. Dijkhuizen,et al.  Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface , 2002, Molecular microbiology.

[12]  T. Wdowiak,et al.  Laser–Raman imagery of Earth's earliest fossils , 2002, Nature.

[13]  A. Knoll,et al.  MACROSCOPIC CARBONACEOUS COMPRESSIONS IN A TERMINAL PROTEROZOIC SHALE: A SYSTEMATIC REASSESSMENT OF THE MIAOHE BIOTA, SOUTH CHINA , 2002, Journal of Paleontology.

[14]  A. Knoll,et al.  Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia , 2002 .

[15]  Linda C. Kah,et al.  Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution , 2001 .

[16]  A. Knoll,et al.  Morphological and ecological complexity in early eukaryotic ecosystems , 2001, Nature.

[17]  J. Maddock,et al.  Polarity in Action: Asymmetric Protein Localization in Bacteria , 2001, Journal of bacteriology.

[18]  N. Butterfield,et al.  Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications , 2001 .

[19]  T. Wdowiak,et al.  In situ laser-Raman imagery of precambrian microscopic fossils. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[21]  Talyzina,et al.  Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia. , 2000, Review of palaeobotany and palynology.

[22]  A. Knoll,et al.  PHOSPHATIZED ANIMAL EMBRYOS FROM THE NEOPROTEROZOIC DOUSHANTUO FORMATION AT WENG'AN, GUIZHOU, SOUTH CHINA , 2000 .

[23]  S. Ōmura,et al.  Actinoplanes capillaceus sp. nov., a new species of the genus Actinoplanes , 2000, Antonie van Leeuwenhoek.

[24]  K. Stetter,et al.  Carbon isotopic composition of individual Precambrian microfossils. , 2000, Geology.

[25]  Nina M. Talyzina,et al.  Ultrastructure and morphology of Chuaria circularis (Walcott, 1899) Vidal and Ford (1985) from the Neoproterozoic Visingsö Group, Sweden , 2000 .

[26]  N. Butterfield,et al.  Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.

[27]  S. Abbott,et al.  Tectonic control on third‐order sequences in a siliciclastic ramp‐style basin: An example from the Roper Superbasin (Mesoproterozoic), northern Australia , 2000 .

[28]  A. Knoll,et al.  Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon , 2000, Paleobiology.

[29]  E. Hoiczyk,et al.  Cyanobacterial Cell Walls: News from an Unusual Prokaryotic Envelope , 2000, Journal of bacteriology.

[30]  U. Sleytr,et al.  S-Layer Proteins , 2000, Journal of bacteriology.

[31]  M. Walter,et al.  A possible chlorophycean affinity of some Neoproterozoic acritarchs , 1999 .

[32]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[33]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[34]  S. Carroll,et al.  Early animal evolution: emerging views from comparative biology and geology. , 1999, Science.

[35]  B. Jørgensen,et al.  Dense populations of a giant sulfur bacterium in Namibian shelf sediments. , 1999, Science.

[36]  J. Downard,et al.  Regulated Exopolysaccharide Production inMyxococcus xanthus , 1999, Journal of bacteriology.

[37]  Scott J. Hultgren,et al.  Bacterial Adhesins: Common Themes and Variations in Architecture and Assembly , 1999, Journal of bacteriology.

[38]  R. Rainbird,et al.  U–Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia–Siberia connection , 1998 .

[39]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[40]  A. Knoll,et al.  Morphological reconstruction of Miaohephyton bifurcatum, a possible brown alga from the Neoproterozoic Doushantuo Formation, South China , 1998, Journal of Paleontology.

[41]  D. Kelly,et al.  A sterol biosynthetic pathway in Mycobacterium , 1998, FEBS letters.

[42]  Talyzina,et al.  Biogeochemical evidence for dinoflagellate ancestors in the early cambrian , 1998, Science.

[43]  A. Knoll,et al.  Permineralized Fossils from the Terminal Proterozoic Doushantuo Formation, South China , 1998, Journal of Paleontology.

[44]  D. Anderson,et al.  Characterization of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagellate resting cyst , 1998 .

[45]  Chen,et al.  Precambrian sponges with cellular structures , 1998, Science.

[46]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[47]  L. Yin Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China , 1997 .

[48]  A. J. Kaufman,et al.  Neoproterozoic Fossils in Mesoproterozoic Rocks? Chemostratigraphic Resolution of a Biostratigraphic Conundrum from the North China Platform , 1997 .

[49]  J. Bartley Actualistic taphonomy of cyanobacteria; implications for the Precambrian fossil record , 1996 .

[50]  J. T. Staley,et al.  Caulobacter and Asticcacaulis stalk bands as indicators of stalk age , 1996, Journal of bacteriology.

[51]  Y. Brun,et al.  Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Watt,et al.  Chemostratigraphic reconstruction of biofacies: Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors , 1996 .

[53]  S. Kumar Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, central India , 1995 .

[54]  B. Runnegar,et al.  Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. , 1992, Science.

[55]  C. Boreham,et al.  Secular and environmental constraints on the occurrence of dinosterane in sediments , 1992 .

[56]  B. Amard Ultrastructure of Chuaria (Walcott) Vidal and Ford (Acritarcha) from the Late Proterozoic Pendjari Formation, Benin and Burkina-Faso, West Africa , 1992 .

[57]  R. Raiswell,et al.  Sedimentology and carbon-sulphur geochemistry of the Velkerri Formation, a mid-Proterozoic potential oil source in northern Australia , 1991 .

[58]  S. Derenne,et al.  Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls of microalgae: Origin of ultralaminae , 1991 .

[59]  R. Summons,et al.  Sterane and triterpane biomarkers in the Precambrian Nonesuch Formation, North American Midcontinent Rift , 1991 .

[60]  K. Poralla,et al.  Tetrahymanol from the phototrophic bacterium Rhodopseudomonas palustris: first report of a gammacerane triterpene from a prokaryote , 1990 .

[61]  A. Knoll,et al.  A bangiophyte red alga from the Proterozoic of arctic Canada. , 1990, Science.

[62]  K. Grey,et al.  Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia , 1990 .

[63]  S. Derenne,et al.  A reappraisal of kerogen formation , 1989 .

[64]  D. M. Ward,et al.  Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona , 1988 .

[65]  Roger E. Summons,et al.  Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons , 1988 .

[66]  H. Schlesner Verrucomicrobium spinosum gen. nov., sp. nov.: a Fimbriated Prosthecate Bacterium , 1987 .

[67]  C. Boreham,et al.  Dinosterane and other steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum , 1987 .

[68]  Zhang Zhongying Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China , 1986, Journal of Micropalaeontology.

[69]  M. Králik RbSb age determinations on Precambrian carbonate rocks of the Carpentarian McArthur basin, Northern Territories, Australia , 1982 .

[70]  C. J. Peat Comparative light microscopy, scanning electron microscopy and transmission electron microscopy of selected organic walled microfossils , 1981 .

[71]  J. Waterbury,et al.  Patterns of growth and development in pleurocapsalean cyanobacteria. , 1978, Microbiological reviews.

[72]  A. Knoll,et al.  Archean microfossils showing cell division from the swaziland system of South Africa. , 1977, Science.

[73]  D. Oehler Pyrenoid-like structures in late Precambrian algae from the Bitter Springs Formation of Australia , 1977 .

[74]  J. Schopf Biostratigraphic usefulness of stromatolitic precambrian microbiotas: A preliminary analysis , 1977 .

[75]  G. Ourisson,et al.  Delta8(14)-steroids in the bacterium Methylococcus capsulatus. , 1976, The Biochemical journal.

[76]  D. Oehler,et al.  MEGASCOPIC ALGAE 1300 MILLION YEARS OLD FROM THE BELT SUPERGROUP, MONTANA: A REINTERPRETATION OF WALCOTT'S HELMINTHOIDICHNITES , 1976 .

[77]  D. Wall Evidence from Recent Plankton Regarding the Biological Affinities of Tasmanites Newton 1875 and Leiosphaeridia Eisenack 1958 , 1962, Geological Magazine.

[78]  T. Cavalier-smith,et al.  The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. , 2002, International journal of systematic and evolutionary microbiology.

[79]  Winston A Hide,et al.  Eukaryotic genes in Mycobacterium tuberculosis could have a role in pathogenesis and immunomodulation. , 2002, Trends in genetics : TIG.

[80]  A. Knoll,et al.  Early eukaryotic diversification , 2002 .

[81]  M. Walter,et al.  Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation , 2000 .

[82]  Y. Bum,et al.  The Dimorphic Life Cycle of Caulobacter and Stalked Bacteria , 2000 .

[83]  A. L. Koch What size should a bacterium be? A question of scale. , 1996, Annual review of microbiology.

[84]  A. Knoll,et al.  Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. , 1995, Lethaia.

[85]  S. M. Barrett,et al.  Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom , 1993 .

[86]  M. Walter,et al.  Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, Central Australia , 1992 .

[87]  J. Volkman,et al.  A new source of 4-methyl sterols and 5α(H)-stanols in sediments: prymnesiophyte microalgae of the genus Pavlova , 1990 .

[88]  M. Walter,et al.  Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana , 1990 .

[89]  Martin Dworkin,et al.  Developmental biology of the bacteria , 1985 .

[90]  S. Golubić,et al.  Interpretation of Microbial Fossils with Special Reference to the Precambrian , 1977 .