A polarizable force field of dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations of lipids.

A polarizable force field of saturated phosphatidylcholine-containing lipids based on the classical Drude oscillator model is optimized and used in molecular dynamics simulations of bilayer and monolayer membranes. The hierarchical parametrization strategy involves the optimization of parameters for small molecules representative of lipid functional groups, followed by their application in larger model compounds and full lipids. The polar headgroup is based on molecular ions tetramethyl ammonium and dimethyl phosphate, the esterified glycerol backbone is based on methyl acetate, and the aliphatic lipid hydrocarbon tails are based on linear alkanes. Parameters, optimized to best represent a collection of gas and liquid properties for these compounds, are assembled into a complete model of dipalmitoylphosphatidylcholine (DPPC) lipids that is tested against the experimental properties of bilayer and monolayer membranes. The polarizable model yields average structural properties that are in broad accord with experimental data. The area per lipid of the model is 60 Å(2), slightly smaller than the experimental value of 63 Å(2). The order parameters from nuclear magnetic resonance deuterium quadrupolar splitting measures, the electron density profile, and the monolayer dipole potential are in reasonable agreement with experimental data, and with the nonpolarizable CHARMM C36 lipid force field.

[1]  J. Seelig,et al.  PHOSPHORUS-31 CHEMICAL SHIFT ANISOTROPY IN UNSONICATED PHOSPHOLIPID BILAYERS , 1976 .

[2]  Alexander D. MacKerell,et al.  Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers , 2010, Journal of molecular modeling.

[3]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[4]  J. Taylor,et al.  Calculation of the intensities of the vibrational components of the ammonia ultra-violet absorption bands , 1970 .

[5]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[6]  Harry A. Stern,et al.  Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests , 2002, J. Comput. Chem..

[7]  E. Valderrama,et al.  An environmental pseudopotential approach to molecular interactions: Implementation in MOLPRO , 2003, J. Comput. Chem..

[8]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[9]  E. Lindahl,et al.  Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. , 2000, Biophysical journal.

[10]  J. Nagle,et al.  Closer look at structure of fully hydrated fluid phase DPPC bilayers. , 2006, Biophysical journal.

[11]  Edward D Harder,et al.  On the origin of the electrostatic potential difference at a liquid-vacuum interface. , 2008, The Journal of chemical physics.

[12]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[13]  J. Crane,et al.  Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures. , 1999, Biophysical journal.

[14]  Alexander D. MacKerell,et al.  Development of the CHARMM Force Field for Lipids. , 2011, The journal of physical chemistry letters.

[15]  Alexander D. MacKerell,et al.  CHARMM: The Energy Function and Its Parameterization , 2002 .

[16]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[17]  Alexander D. MacKerell,et al.  Many-body polarization effects and the membrane dipole potential. , 2009, Journal of the American Chemical Society.

[18]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard–Jones parameters , 1998 .

[19]  Callum J. Dickson,et al.  GAFFlipid: a General Amber Force Field for the accurate molecular dynamics simulation of phospholipid , 2012 .

[20]  Alexander D. MacKerell,et al.  An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. , 2005, The journal of physical chemistry. B.

[21]  Stefan Boresch,et al.  RATIONALIZATION OF THE DIELECTRIC PROPERTIES OF COMMON THREE-SITE WATER MODELS IN TERMS OF THEIR FORCE FIELD PARAMETERS , 1998 .

[22]  Richard A Friesner,et al.  Efficient Simulation Method for Polarizable Protein Force Fields:  Application to the Simulation of BPTI in Liquid Water. , 2005, Journal of chemical theory and computation.

[23]  G. Feigenson,et al.  Order parameters and areas in fluid-phase oriented lipid membranes using wide angle X-ray scattering. , 2008, Biophysical journal.

[24]  J. Seelig,et al.  The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. , 1974, Biochemistry.

[25]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[26]  Alexander D. MacKerell,et al.  Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model. , 2011, The journal of physical chemistry. B.

[27]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[28]  R. Griffin,et al.  Phosphorus-31 chemical-shift tensors in barium diethyl phosphate and urea-phosphoric acid: model compounds for phospholipid head-group studies. , 1978, Biochemistry.

[29]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[30]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[31]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[32]  P. Macdonald,et al.  Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and quadrupolar couplings in bicelles , 2004, Magnetic resonance in chemistry : MRC.

[33]  A. Pohorille,et al.  Surface potential of the water liquid-vapor interface. , 1988, The Journal of chemical physics.

[34]  Jeremy Pencer,et al.  Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. , 2008, Biophysical journal.

[35]  J. M. Smaby,et al.  Surface dipole moments of lipids at the argon-water interface. Similarities among glycerol-ester-based lipids. , 1990, Biophysical journal.

[36]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[37]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[38]  Ronald J Clarke,et al.  Hydrophobic ion hydration and the magnitude of the dipole potential. , 2002, Biophysical journal.

[39]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[40]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[41]  M. M. Piñeiro,et al.  Thermodynamic behaviour of mixtures containing methyl acetate, methanol, and 1-butanol at 298.15 K: application of the ERAS model , 1998 .

[42]  Alexander D. MacKerell,et al.  Polarizable empirical force field for aromatic compounds based on the classical drude oscillator. , 2007, The journal of physical chemistry. B.

[43]  Jeffery B. Klauda,et al.  Dynamical motions of lipids and a finite size effect in simulations of bilayers. , 2006, The Journal of chemical physics.

[44]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[45]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[46]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Surface Tension , 1949 .

[47]  I. Vorobyov,et al.  Electrostatics of deformable lipid membranes. , 2010, Biophysical journal.

[48]  Alexander D. MacKerell,et al.  Chapter 1 Considerations for Lipid Force Field Development , 2008 .

[49]  Akihiro Morita Water polarizability in condensed phase: Ab initio evaluation by cluster approach , 2002, J. Comput. Chem..

[50]  Alan E Mark,et al.  Lipid Bilayers: The Effect of Force Field on Ordering and Dynamics. , 2012, Journal of chemical theory and computation.

[51]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[52]  R. Clegg,et al.  Translational diffusion of lipids in liquid crystalline phase phosphatidylcholine multibilayers. A comparison of experiment with theory. , 1985, Biochemistry.

[53]  H. Scheidt,et al.  Diffusion of cholesterol and its precursors in lipid membranes studied by 1H pulsed field gradient magic angle spinning NMR. , 2005, Biophysical journal.

[54]  Martin Head-Gordon,et al.  Advances in Methods and Algorithms in a Modern Quantum Chemistry Program Package , 2006 .

[55]  S. Cheong,et al.  Stochastic boundary conditions for molecular dynamics simulations , 2009, 0910.1401.

[56]  Liguo Wang Measurements and implications of the membrane dipole potential. , 2012, Annual review of biochemistry.

[57]  Benoît Roux,et al.  Molecular dynamics study of hydration in ethanol-water mixtures using a polarizable force field. , 2005, The journal of physical chemistry. B.

[58]  Thomas J. Piggot,et al.  Molecular Dynamics Simulations of Phosphatidylcholine Membranes: A Comparative Force Field Study. , 2012, Journal of chemical theory and computation.

[59]  Alexander D. MacKerell,et al.  Additive and Classical Drude Polarizable Force Fields for Linear and Cyclic Ethers. , 2007, Journal of chemical theory and computation.

[60]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[61]  B. Roux,et al.  Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. , 2006, The journal of physical chemistry. B.

[62]  Benoît Roux,et al.  Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2006, Journal of chemical theory and computation.

[63]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[64]  C. Cramer,et al.  Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. , 2006, The journal of physical chemistry. B.

[65]  Alexander D. MacKerell,et al.  Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2005, Journal of chemical theory and computation.

[66]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[67]  Alexander D. MacKerell,et al.  Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[68]  P. Fowler,et al.  ENVIRONMENTAL EFFECTS ON ANION POLARIZABILITY : VARIATION WITH LATTICE PARAMETER AND COORDINATION NUMBER , 1998 .

[69]  Alexander D. MacKerell,et al.  Polarizable empirical force field for alkanes based on the classical Drude oscillator model. , 2005, The journal of physical chemistry. B.

[70]  J. Tabony,et al.  Quasielastic neutron scattering measurements of fast local translational diffusion of lipid molecules in phospholipid bilayers. , 1991, Biochimica et biophysica acta.

[71]  Alexander D. MacKerell,et al.  Understanding the dielectric properties of liquid amides from a polarizable force field. , 2008, The journal of physical chemistry. B.

[72]  Patrick W. Fowler,et al.  In-crystal polarizabilities of alkali and halide ions , 1984 .

[73]  J. Perram,et al.  Computer simulation of the static dielectric constant of systems with permanent electric dipoles. , 1986, Annual review of physical chemistry.

[74]  H. Coker Empirical free-ion polarizabilities of the alkali metal, alkaline earth metal, and halide ions , 1976 .

[75]  Klaus Schulten,et al.  High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. , 2011, The journal of physical chemistry letters.

[76]  A. Chaudhari,et al.  Dielectric Measurements on Methyl Acetate + Alcohol Mixtures at (288, 298, 308, and 318) K Using the Time Domain Technique , 2000 .

[77]  G. Mahan van der Waals coefficient between closed shell ions , 1982 .

[78]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[79]  Benoît Roux,et al.  Hydration of Amino Acid Side Chains: Nonpolar and Electrostatic Contributions Calculated from Staged Molecular Dynamics Free Energy Simulations with Explicit Water Molecules , 2004 .

[80]  D. Marsh Lateral pressure in membranes. , 1996, Biochimica et biophysica acta.

[81]  J. Seelig,et al.  Bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Conformational differences between the fatty acyl chains. , 1975, Biochimica et biophysica acta.

[82]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[83]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[84]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[85]  Alexander D. MacKerell,et al.  Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. , 2007, Journal of chemical theory and computation.