Drd1a-tdTomato BAC Transgenic Mice for Simultaneous Visualization of Medium Spiny Neurons in the Direct and Indirect Pathways of the Basal Ganglia

### Introduction The expression of fluorescent proteins in defined subsets of neurons has become a powerful tool for neurobiology. One limitation of this technology is that the majority of BAC transgenic mice harnessing this technology use enhanced green fluorescent protein (EGFP) as the

[1]  Kristen K. Ade,et al.  Differential Tonic GABA Conductances in Striatal Medium Spiny Neurons , 2008, The Journal of Neuroscience.

[2]  D. Surmeier,et al.  Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons , 2007, Nature Neuroscience.

[3]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[4]  Robert C. Malenka,et al.  Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models , 2007, Nature.

[5]  Eric C. Griffith,et al.  Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation , 2006, Neuron.

[6]  A. Sampson,et al.  Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models , 2006, Nature Neuroscience.

[7]  A. Graybiel The basal ganglia: learning new tricks and loving it , 2005, Current Opinion in Neurobiology.

[8]  J. Long,et al.  Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein , 2005, BMC biotechnology.

[9]  M. Gertsenstein,et al.  Mouse in Red ‐ Red Fluorescent Protein Expression in Mouse ES Cells, Embryos and Adult Animals , 2005 .

[10]  M. Gertsenstein,et al.  Mouse in red: Red fluorescent protein expression in mouse ES cells, embryos, and adult animals , 2004, Genesis.

[11]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[12]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[13]  D. Court,et al.  A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. , 2001, Genomics.

[14]  N. Chaffey Red fluorescent protein , 2001 .

[15]  M R DeLong,et al.  Models of basal ganglia function and pathophysiology of movement disorders. , 1998, Neurosurgery clinics of North America.

[16]  B. Bloch,et al.  D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum , 1995, The Journal of comparative neurology.

[17]  A. D. Smith,et al.  Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy , 1995, Neuroscience.

[18]  J. Penney,et al.  The functional anatomy of disorders of the basal ganglia , 1995, Trends in Neurosciences.

[19]  A. Levey,et al.  D1 and D2 dopamine receptor mRNA in rat brain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Powell,et al.  The structure of the caudate nucleus of the cat: light and electron microscopy. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  R. Faull,et al.  The Basal Ganglia , 2004 .

[22]  M. Hofker,et al.  Generation of transgenic mice. , 1998, Methods in molecular biology.

[23]  A. Levey,et al.  D 1 and D 2 dopamine receptor mRNA in rat brain ( striatum / substantia nigra / amygdala / septum / in situ hybridization ) , 2022 .