A Hierarchical Ecological Approach to Conserving Marine Biodiversity

: A number of ecological models have been developed to provide an understanding of the various biotic and abiotic components required to conserve biodiversity and to reconcile objectives and methods between those interested in the conservation of species (e.g., population management) and those advocating the conservation of spaces (e.g., protected areas). One of the better known efforts—pioneered in the Pacific Northwest of the United States—is a hierarchical ecological framework that separates biodiversity into compositional, structural, and functional attributes at the genetic, population, community-ecosystem, and landscape levels of organization. We present an adaptation of this terrestrial framework consistent with the ecological function of marine environments. Our adaptation differs in its treatment of the community and ecosystem levels of organization. In our marine framework, the community level denotes predominantly the biotic community components of biodiversity, and the ecosystem level—consistent with marine terminology—denotes predominantly physical and chemical components. The community and ecosystem levels are further separated into those attributes based on ecological structures such as depth or species richness and those based on ecological processes such as water motion or succession. The distinction between the biotic (genetic, population, and community) and abiotic (ecosystem) is required because the biological components of biodiversity such as competition or predation are often more difficult to observe than the abiotic components such as upwellings, substratum, or temperature. As a result, efforts to conserve marine biodiversity are often dependent on the observable abiotic (ecosystem) components, which can be used as surrogates for the identification and monitoring of biotic (community) components. We used our hierarchical framework to identify and suggest how conservation strategies could be implemented in marine environments depending on whether existing data are to be used or new data are to be collected. Resumen: Se ha desarrollado una gran cantidad de modelos ecologicos para entender los diversos componentes bioticos y abioticos requeridos para conservar la biodiversidad y reconciliar objetivos y metodos entre aquellas personas interesadas en la conservacion de especies (  por ejemplo, manejo poblacional) y aquellas que abogan por la conservacion de espacios (  por ejemplo, areas protegidas). Uno de los esfuerzos mas conocidos—iniciado en el oceano Pacifico del noroeste de los Estados Unidos—es un marco ecologico y jerarquico que separa la biodiversidad en atributos estructurales, funcionales y de composicion a niveles de organizacion genetica, de poblacion, de comunidad/ecosistema y de paisaje. Presentamos una adaptacion de este marco de trabajo terrestre, consistente con la funcion ecologica de ambientes marinos. Nuestra adaptacion difiere en el tratamiento de los niveles de organizacion de comunidad y ecosistema. En nuestro marco marino, el nivel de comunidad denota predominantemente los componentes bioticos comunitarios de la biodiversidad, y el nivel de ecosistema—consistente con la terminologia marina—denota predominantemente los componentes fisicos y quimicos. Los niveles de comunidad y ecosistema son separados aun mas en aquellos atributos basados en estructuras ecologicas tales como la profundidad y la riqueza de especies y aquellos basados en procesos ecologicos tales como el movimiento del agua y la sucesion. La distincion entre lo biotico (genetico, poblacion y comunidad) y lo abiotico (ecosistema) se requiere puesto que los componentes biologicos de la biodiversidad, tales como la competencia o la depredacion son a menudo mas dificiles de observar que los componentes abioticos tales como las corrientes de ascendencia, el substrato o la temperatura. Como resultado, los esfuerzos para conservar la biodiversidad marina dependen frecuentemente de los componentes abioticos observables (ecosistema), los cuales pueden ser usados como substitutos para la identificacion y el monitoreo de componentes bioticos (comunidad). Utilizamos un marco conceptual jerarquico para identificar y sugerir la manera en que las estrategias de conservacion podrian ser implementadas en ambientes marinos dependiendo de la existencia de datos a utilizar, o de la necesidad de colectar nuevos datos.

[1]  Jane Lubchenco,et al.  MARINE RESERVES ARE NECESSARY BUT NOT SUFFICIENT FOR MARINE CONSERVATION , 1998 .

[2]  B. Hayden,et al.  Classification of Coastal and Marine Environments , 1984, Environmental Conservation.

[3]  A. Magurran,et al.  Biological diversity : the coexistence of species on changing landscapes , 1994 .

[4]  A. Mcintyre Understanding marine biodiversity: Report of the Committee on Biological Diversity in Marine Systems. National Academy Press, Oxford, 114 pp., hardback £24.95, ISBN O 309 05225 4 , 1996 .

[5]  J. Estes,et al.  Sea Otters: Their Role in Structuring Nearshore Communities , 1974, Science.

[6]  G. Niemi,et al.  A critical analysis on the use of indicator species in management , 1997 .

[7]  D. Simberloff Flagships, umbrellas, and keystones: Is single-species management passé in the landscape era? , 1998 .

[8]  R. May Bottoms up for the oceans , 1992, Nature.

[9]  G. Thorson Chapter 17: Bottom Communities (Sublittoral or Shallow Shelf) , 1957 .

[10]  R. Noss Indicators for Monitoring Biodiversity: A Hierarchical Approach , 1990 .

[11]  M. Huston,et al.  Biological Diversity: The Co-existence of Species on Changing Landscapes. , 1997 .

[12]  Sven Ekman,et al.  Zoogeography of the sea , 1953 .

[13]  R. Paine Food Web Complexity and Species Diversity , 1966, The American Naturalist.

[14]  J. Caddy,et al.  A tentative classification of coastal marine ecosystems based on dominant processes of nutrient supply , 1994 .

[15]  James Willard Nybakken,et al.  Marine Biology: An Ecological Approach , 1982 .

[16]  K. Mann,et al.  Dynamics of marine ecosystems:biological-physical interactions in the oceans , 1992 .

[17]  J. C. Weaver Indicator Species and Scale of Observation , 1995 .

[18]  K. Mann,et al.  Dynamics of Marine Ecosystems: Biological and Physical Interactions in the Oceans , 1997 .

[19]  A. Metaxas,et al.  Top down and bottom-up regulation of phytoplankton assemblages in tidepools , 1996 .

[20]  M. Glemarec The benthic communities of the European North Atlantic continental shelf , 1973 .

[21]  J. Franklin,et al.  Ecological characteristics of old-growth Douglas-fir forests. , 1981 .

[22]  R. Ricklefs,et al.  Community Diversity: Relative Roles of Local and Regional Processes , 1987, Science.

[23]  Dennis D. Murphy,et al.  Umbrella species and the conservation of habitat fragments: a case of a threatened butterfly and a vanishing grassland ecosystem , 1994 .

[24]  Ecological Animal Geography , 1937 .

[25]  B. Menge,et al.  Community Regulation: Under What Conditions Are Bottom‐Up Factors Important on Rocky Shores? , 1992 .