Step kinetics on monosodium urate monohydrate single crystal surfaces: an in situ AFM study

The deposition of monosodium urate (MSU) crystals in synovial fluid is a classic clinical symptom of the joint disease gout. In previous work (CrystEngComm, 2011, 13, 1111–1117), it was reported that crystal growth occurs by an island deposition mechanism in 2–10 mM urate solutions under simulated physiologic conditions (150 mM NaCl, 37 °C, pH = 7.4). The present work examines in greater detail the molecular-level growth occurring in the areas between deposited islands on two types of single crystal surfaces – (100) and (1–10) using in situ atomic force microscopy. The surface topography on both types of faces consisted of elementary (unit cell) steps and macrosteps (>45 nm) which showed significant quantifiable differences in their in-plane growth kinetics. All growing steps exhibited orientations corresponding to high Miller Index directions and showed a non-linear increase in lateral velocity over the supersaturation range σ = 2.5–3.4. Topographical imaging was additionally used to establish the preferred relative orientation of domains in these frequently twinned crystals.

[1]  E. V. Keuren,et al.  Monosodium urate monohydrate crystallization , 2011 .

[2]  Ying Fan,et al.  Growth mechanism of large-size anthracene single crystals grown by a solution technique , 2009 .

[3]  B. Slater,et al.  Spiral growth on nanoporous silicoaluminophosphate STA-7 as observed by atomic force microscopy , 2009 .

[4]  J. A. Gavira,et al.  Comparison of Different Experimental Techniques for the Measurement of Crystal Growth Kinetics , 2008 .

[5]  G. Bussetti,et al.  Epitaxial growth of organic heterostructures: morphology, structure, and growth mode , 2007 .

[6]  D. Xu,et al.  AFM investigation of the {101} surface morphology of L-arginine trifluoroacetate (LATF) crystals , 2007 .

[7]  A. Sassella,et al.  Using atomic force microscopy to reveal the nature of extended defects in organic semiconductors: the role of crystal growth mechanisms , 2007 .

[8]  Liduo Wang,et al.  Morphological characterization of pentacene single crystals grown by physical vapor transport , 2007 .

[9]  Kunpeng Wang,et al.  Investigation of growth mechanisms of TSS-grown KLu(WO4)2 crystals by atomic force microscopy , 2006 .

[10]  F. Martinon,et al.  Gout: new insights into an old disease. , 2006, The Journal of clinical investigation.

[11]  M. Underwood,et al.  Diagnosis and management of gout , 2006, BMJ : British Medical Journal.

[12]  J. Swift,et al.  An in situ atomic force microscopy study of uric acid crystal growth. , 2005, The journal of physical chemistry. B.

[13]  G. Zhang,et al.  Atomic force microscopy studies on growth mechanisms of LAP crystals grown in solution containing excessive amount of l-arginine , 2005 .

[14]  R. Terkeltaub,et al.  Gout: on the brink of novel therapeutic options for an ancient disease. , 2004, Arthritis and rheumatism.

[15]  T. N. Thomas,et al.  AFM investigation of step kinetics and hillock morphology of the {1 0 0} face of KDP , 2004 .

[16]  Alexander McPherson,et al.  Macromolecular crystal growth as revealed by atomic force microscopy. , 2003, Journal of structural biology.

[17]  S. Veesler,et al.  α-amylase crystal growth investigated by in situ atomic force microscopy , 2001 .

[18]  E. Königsberger,et al.  Thermodynamic modeling of crystal deposition in humans , 2001 .

[19]  A. McPherson,et al.  In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization , 1999 .

[20]  E. Königsberger,et al.  Solubility equilibria in the uric acid–sodium urate–water system , 1998 .

[21]  J. D. Lee,et al.  An in-situ AFM investigation of canavalin crystallization kinetics , 1997 .

[22]  P. Hansma,et al.  AFM images of dissolution and growth on a calcite crystal , 1992 .

[23]  K. Pritzker,et al.  A comparison of five preparations of synthetic monosodium urate monohydrate crystals. , 1992, The Journal of rheumatology.

[24]  L. Addadi,et al.  A structural approach to pathological crystallizations. Gout: the possible role of albumin in sodium urate crystallization , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  P. Calvert,et al.  Crystal growth of monosodium urate monohydrate , 1985 .

[26]  R. Boistelle,et al.  Theoretical and experimental growth morphologies of sodium urate crystals , 1982 .

[27]  G. H. Nancollas,et al.  The crystallization and dissolution of sodium urate , 1981 .

[28]  G. Mandel,et al.  Monosodium urate monohydrate, the gout culprit. , 1976, Journal of the American Chemical Society.

[29]  B. Finlayson,et al.  Stability of first dissociable proton of uric acid , 1974 .

[30]  W. Wilcox,et al.  Solubility and nucleation of monosodium urate in relation to gouty arthritis , 1973 .

[31]  T. Dawber,et al.  Epidemiology of gout and hyperuricemia. A long-term population study. , 1967, The American journal of medicine.

[32]  G. Milosovich,et al.  CRYSTAL GROWTH OF SODIUM ACID URATE. , 1965, Journal of pharmaceutical sciences.

[33]  L. Steinrauf Preliminary X-ray data for some new crystalline forms of β-lactoglobulin and hen-egg-white lysozyme , 1959 .