Stochastic Regular Grazing Bifurcations

A grazing bifurcation corresponds to the collision of a periodic orbit with a switching manifold in a piecewise-smooth ODE system and often generates complicated dynamics. The lowest order terms of the induced Poincare map expanded about a regular grazing bifurcation constitute a Nordmark map. In this paper we study a normal form of the Nordmark map in two dimensions with additive Gaussian noise of amplitude $\varepsilon$. We show that this particular noise formulation arises in a general setting and consider a harmonically forced linear oscillator subject to compliant impacts to illustrate the accuracy of the map. Numerically computed invariant densities of the stochastic Nordmark map can take highly irregular forms or, if there exists an attracting period-$n$ solution when $\varepsilon=0$, be well approximated by the sum of $n$ Gaussian densities centered about each point of the deterministic solution, and scaled by $\frac{1}{n}$, for sufficiently small $\varepsilon>0$. We explain the irregular forms an...

[1]  R. Khas'minskii A Limit Theorem for the Solutions of Differential Equations with Random Right-Hand Sides , 1966 .

[2]  D. V. Iourtchenko,et al.  Random Vibrations with Impacts: A Review , 2004 .

[3]  M. P. Païdoussis,et al.  Cross-flow-induced chaotic vibrations of heat-exchanger tubes impacting on loose supports , 1992 .

[4]  Andreas Daffertshofer,et al.  Effects of noise on the phase dynamics of nonlinear oscillators , 1998 .

[5]  J. Molenaar,et al.  Mappings of grazing-impact oscillators , 2001 .

[6]  S. Theodossiades,et al.  NON-LINEAR DYNAMICS OF GEAR-PAIR SYSTEMS WITH PERIODIC STIFFNESS AND BACKLASH , 2000 .

[7]  Probability Theory III : Stochastic Calculus , 1998 .

[8]  Gabriele Bleckert,et al.  The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation , 1999 .

[9]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[10]  Alexander B. Neiman,et al.  Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments , 2003 .

[11]  W. Q. Zhu,et al.  Stochastic Jump and Bifurcation of a Duffing Oscillator Under Narrow-Band Excitation , 1993 .

[12]  D. V. Iourtchenko,et al.  Stochastic and/or Chaotic Response of a Vibration System to Imperfectly Periodic sinusoidal Excitation , 2005, Int. J. Bifurc. Chaos.

[13]  L. Arnold,et al.  TOWARD AN UNDERSTANDING OF STOCHASTIC HOPF BIFURCATION: A CASE STUDY , 1994 .

[14]  H. Dankowicz,et al.  On the origin and bifurcations of stick-slip oscillations , 2000 .

[15]  Arne Nordmark,et al.  On normal form calculations in impact oscillators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Arne Nordmark,et al.  Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators , 2001 .

[17]  Harry Dankowicz,et al.  Near-grazing Dynamics in Tapping-mode Atomic-force Microscopy , 2007 .

[18]  M. di Bernardo,et al.  Bifurcations of dynamical systems with sliding: derivation of normal-form mappings , 2002 .

[19]  Arvind Raman,et al.  Cantilever dynamics in atomic force microscopy , 2008 .

[20]  Rajasekar Controlling of chaotic motion by chaos and noise signals in a logistic map and a Bonhoeffer-van der Pol oscillator. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Alessandro Colombo,et al.  The Two-Fold Singularity of Discontinuous Vector Fields , 2009, SIAM J. Appl. Dyn. Syst..

[22]  E Weinan,et al.  Self-induced stochastic resonance in excitable systems , 2005 .

[23]  Alessandro Colombo,et al.  Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems , 2012 .

[24]  L. Arnold Random Dynamical Systems , 2003 .

[25]  L. Arnold,et al.  Recent Progress in Stochastic Bifurcation Theory , 2001 .

[26]  A. Nordmark,et al.  Bifurcations caused by grazing incidence in many degrees of freedom impact oscillators , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Alan R. Champneys,et al.  Corner collision implies border-collision bifurcation , 2001 .

[28]  Marian Wiercigroch,et al.  Applied nonlinear dynamics and chaos of mechanical systems with discontinuities , 2000 .

[29]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[30]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[31]  Renate Wackerbauer Noise-induced stabilization of one-dimensional discontinuous maps , 1998 .

[32]  Alessandro Colombo,et al.  Nondeterministic Chaos, and the Two-fold Singularity in Piecewise Smooth Flows , 2011, SIAM J. Appl. Dyn. Syst..

[33]  René Lefever,et al.  Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology , 2007 .

[34]  S. John Hogan,et al.  Dynamics of Discontinuous Systems with Imperfections and Noise , 2005 .

[35]  N. Namachchivaya Stochastic bifurcation , 1990 .

[36]  N. Namachchivaya,et al.  P-Bifurcations in the Noisy Duffing-van der Pol Equation , 1999 .

[37]  N. Sri Namachchivaya,et al.  Stochastic dynamics of impact oscillators , 2005 .

[38]  Tomasz Kapitaniak,et al.  Chaos In Systems With Noise , 1988 .

[39]  Grebogi,et al.  Grazing bifurcations in impact oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[41]  Ekaterina Pavlovskaia,et al.  Experimental study of impact oscillator with one-sided elastic constraint , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[43]  Ekaterina Pavlovskaia,et al.  Dynamics of a nearly symmetrical piecewise linear oscillator close to grazing incidence: Modelling and experimental verification , 2006 .

[44]  K. Schenk-Hoppé,et al.  Bifurcation scenarios of the noisy duffing-van der pol oscillator , 1996 .

[45]  Mario di Bernardo,et al.  Piecewise smooth dynamical systems , 2008, Scholarpedia.

[46]  P. Spanos,et al.  Stochastic averaging: An approximate method of solving random vibration problems , 1986 .

[47]  Raouf A. Ibrahim,et al.  Vibro-Impact Dynamics , 2009 .

[48]  I. Grabec Chaotic dynamics of the cutting process , 1988 .

[49]  A. Raman,et al.  Multiple impact regimes in liquid environment dynamic atomic force microscopy , 2008 .

[50]  J. Rogers Chaos , 1876 .

[51]  D. Simpson,et al.  Stochastically perturbed sliding motion in piecewise-smooth systems , 2012, 1204.5792.

[52]  R. E. Wilson,et al.  Coexisting solutions and bifurcations in mechanical oscillators with backlash , 2007 .

[53]  A. Nordmark Universal limit mapping in grazing bifurcations , 1997 .

[54]  Linz,et al.  Effect of additive and multiplicative noise on the first bifurcations of the logistic model. , 1986, Physical review. A, General physics.

[55]  Alan R. Champneys,et al.  Normal form maps for grazing bifurcations in n -dimensional piecewise-smooth dynamical systems , 2001 .

[56]  F. Pfeiffer,et al.  STOCHASTIC MODEL ON A RATTLING SYSTEM , 1998 .

[57]  Matthew A. Franchek,et al.  Robust control of chaotic vibrations for impacting heat exchanger tubes in crossflow , 1999 .

[58]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[59]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[60]  Paul Glendinning The Border Collision Normal Form with Stochastic Switching Surface , 2014, SIAM J. Appl. Dyn. Syst..

[61]  Marian Wiercigroch,et al.  Chaotic Vibration of a Simple Model of the Machine Tool-Cutting Process System , 1997 .

[62]  Friedrich Pfeiffer,et al.  Rattling models from deterministic to stochastic processes , 1990 .

[63]  B. Brogliato Nonsmooth Mechanics: Models, Dynamics and Control , 1999 .

[64]  A. I. Menyailov,et al.  Response of a Single-mass Vibroimpact System to White-noise Random Excitation , 1979 .

[65]  Edgar Knobloch,et al.  A stochastic return map for stochastic differential equations , 1990 .

[66]  H. Haken,et al.  The influence of noise on the logistic model , 1981 .

[67]  Z. Schuss Theory and Applications of Stochastic Processes , 2010 .

[68]  Z. Schuss Theory and Applications of Stochastic Processes: An Analytical Approach , 2009 .

[69]  Johan Grasman,et al.  Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications , 1999 .

[70]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[71]  Tomasz Kapitaniak,et al.  Chaotic Mechanics in Systems with Impacts and Friction , 1999 .

[72]  Edgar Knobloch,et al.  Noise in nonlinear dynamical systems: Effect of noise on discrete dynamical systems with multiple attractors , 1989 .

[73]  Torsten Söderström,et al.  Discrete-time Stochastic Systems , 2002 .

[74]  J. Kurths,et al.  Coherence Resonance in a Noise-Driven Excitable System , 1997 .

[75]  Ekaterina Pavlovskaia,et al.  The nature of the normal form map for soft impacting systems , 2008 .

[76]  B. Huberman,et al.  Fluctuations and simple chaotic dynamics , 1982 .