The Global Oxygen Cycle

[1]  K. V. Damm Controls on the Chemistry and Temporal Variability of Seafloor Hydrothermal Fluids , 2013 .

[2]  H. D. Holland Why the atmosphere became oxygenated: A proposal , 2009 .

[3]  James F Kasting,et al.  A revised, hazy methane greenhouse for the Archean Earth. , 2008, Astrobiology.

[4]  I. Fletcher,et al.  Reassessing the first appearance of eukaryotes and cyanobacteria , 2008, Nature.

[5]  Deborah S. Kelley,et al.  Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field , 2008, Science.

[6]  A. J. Kaufman,et al.  Late Archean Biospheric Oxygenation and Atmospheric Evolution , 2007, Science.

[7]  A. J. Kaufman,et al.  A Whiff of Oxygen Before the Great Oxidation Event? , 2007, Science.

[8]  D. Newman,et al.  Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph , 2007, Proceedings of the National Academy of Sciences.

[9]  L. Kump,et al.  Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago , 2007, Nature.

[10]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[11]  N. Sleep 9.06 – Plate Tectonics through Time , 2007 .

[12]  David C. Catling,et al.  Biogeochemical modelling of the rise in atmospheric oxygen , 2006 .

[13]  Robert A. Berner,et al.  GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 , 2006 .

[14]  D. Canfield,et al.  Early anaerobic metabolisms , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Timothy M. Lenton,et al.  Bistability of atmospheric oxygen and the Great Oxidation , 2006, Nature.

[16]  Yumiko Watanabe,et al.  Sulphur isotope evidence for an oxic Archaean atmosphere , 2006, Nature.

[17]  J. Kirschvink Archean sterol biomarkers do not prove oxygenic photosynthesis , 2006 .

[18]  J. Kramers,et al.  Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales , 2006 .

[19]  J. Hayes,et al.  The carbon cycle and associated redox processes through time , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  H. D. Holland,et al.  The oxygenation of the atmosphere and oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  R. Kopp,et al.  The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[23]  James F. Kasting,et al.  A coupled atmosphere–ecosystem model of the early Archean Earth , 2005 .

[24]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[25]  N. Sleep Dioxygen over geological time. , 2005, Metal ions in biological systems.

[26]  D. Rubie,et al.  The Constancy of Upper Mantle fO2 Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric O2 , 2004 .

[27]  Yumiko Watanabe,et al.  Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago , 2004, Nature.

[28]  Timothy M. Lenton,et al.  COPSE: a new model of biogeochemical cycling over Phanerozoic time , 2004 .

[29]  John W. Delano,et al.  Redox History of the Earth's Interior since ∼3900 Ma: Implications for Prebiotic Molecules , 2001, Origins of life and evolution of the biosphere.

[30]  D. Canfield,et al.  Calibration of Sulfate Levels in the Archean Ocean , 2002, Science.

[31]  Heinrich D. Holland,et al.  Volcanic gases, black smokers, and the great oxidation event , 2002 .

[32]  K. Hinrichs Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible? , 2002 .

[33]  Hans-F. Graf,et al.  The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years , 2002 .

[34]  Donald E. Canfield,et al.  Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides , 2002, Nature.

[35]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[36]  D. Canil Vanadium in peridotites, mantle redox and tectonic environments: Archean to present , 2002 .

[37]  E. Moores Pre–1 Ga (pre-Rodinian) ophiolites: Their tectonic and environmental implications , 2002 .

[38]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[39]  K. Zahnle,et al.  Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth , 2001, Science.

[40]  N. Sleep,et al.  Carbon dioxide cycling and implications for climate on ancient Earth , 2001 .

[41]  J. Kasting,et al.  Rise of atmospheric oxygen and the “upside‐down” Archean mantle , 2001 .

[42]  J. Kasting,et al.  Greenhouse warming by CH4 in the atmosphere of early Earth. , 2000, Journal of geophysical research.

[43]  K. V. Damm Chemistry of hydrothermal vent fluids from 9°–10°N, East Pacific Rise: “Time zero,” the immediate posteruptive period , 2000 .

[44]  Donald E. Canfield,et al.  The Archean sulfur cycle and the early history of atmospheric oxygen. , 2000, Science.

[45]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[46]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[47]  C. Lécuyer,et al.  Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth's mantle and atmosphere , 1999 .

[48]  H. Ohmoto Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota , 1996, Geology.

[49]  M. Mottl,et al.  HYDROTHERMAL CIRCULATION THROUGH MID-OCEAN RIDGE FLANKS : FLUXES OF HEAT AND MAGNESIUM , 1994 .

[50]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[51]  J. Kasting,et al.  Mantle Redox Evolution and the Oxidation State of the Archean Atmosphere , 1993, The Journal of Geology.

[52]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.

[53]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[54]  G. Schubert,et al.  Thermal Evolution of the Earth: Effects of Volatile Exchange Between Atmosphere and Interior , 1988 .

[55]  J. Schopf,et al.  Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. , 1987, Science.

[56]  T. Ackerman,et al.  Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere. , 1986, Science.

[57]  P. Brimblecombe,et al.  Iron and sulfur in the pre-biologic ocean. , 1985, Precambrian research.

[58]  J. Kasting,et al.  Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth , 1984, Journal of atmospheric chemistry.

[59]  W. Jaeschke,et al.  The contribution of volcanoes to the global atmospheric sulfur budget , 1983 .

[60]  D. Gough Solar interior structure and luminosity variations , 1981 .

[61]  R. Garrels,et al.  Phanerozoic cycles of sedimentary carbon and sulfur. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[62]  R. Clayton,et al.  Oxygen isotope composition of the oceanic crust and its bearing on seawater , 1976 .

[63]  N. Sleep,et al.  Hydrothermal Circulation and Geochemical Flux at Mid-Ocean Ridges , 1976, The Journal of Geology.

[64]  D. Hunten The Escape of Light Gases from Planetary Atmospheres , 1973 .

[65]  P. Cloud A working model of the primitive Earth , 1972 .