Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives.

Lithium-ion batteries are becoming increasingly important for electrifying the modern transportation system and, thus, hold the promise to enable sustainable mobility in the future. However, their large-scale application is hindered by severe safety concerns when the cells are exposed to mechanical, thermal, or electrical abuse conditions. These safety issues are intrinsically related to their superior energy density, combined with the (present) utilization of highly volatile and flammable organic-solvent-based electrolytes. Herein, state-of-the-art electrolyte systems and potential alternatives are briefly surveyed, with a particular focus on their (inherent) safety characteristics. The challenges, which so far prevent the widespread replacement of organic carbonate-based electrolytes with LiPF6 as the conducting salt, are also reviewed herein. Starting from rather "facile" electrolyte modifications by (partially) replacing the organic solvent or lithium salt and/or the addition of functional electrolyte additives, conceptually new electrolyte systems, including ionic liquids, solvent-free, and/or gelled polymer-based electrolytes, as well as solid-state electrolytes, are also considered. Indeed, the opportunities for designing new electrolytes appear to be almost infinite, which certainly complicates strict classification of such systems and a fundamental understanding of their properties. Nevertheless, these innumerable opportunities also provide a great chance of developing highly functionalized, new electrolyte systems, which may overcome the afore-mentioned safety concerns, while also offering enhanced mechanical, thermal, physicochemical, and electrochemical performance.

[1]  H. Ohno,et al.  3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals. , 2011, Journal of the American Chemical Society.

[2]  M. Armand,et al.  New covalent salts of the 4+ V class for Li batteries , 2011 .

[3]  R. Torresi,et al.  Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid. , 2008, The journal of physical chemistry. B.

[4]  Vanchiappan Aravindan,et al.  Lithium-ion conducting electrolyte salts for lithium batteries. , 2011, Chemistry.

[5]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[6]  Kang Xu,et al.  LiBOB: Is it an alternative salt for lithium ion chemistry? , 2005 .

[7]  Kang Xu,et al.  Toward Reliable Values of Electrochemical Stability Limits for Electrolytes , 1999 .

[8]  N. Dudney,et al.  Solid state thin-film lithium battery systems , 1999 .

[9]  A. J. Bhattacharyya,et al.  Utilizing an ionic liquid for synthesizing a soft matter polymer “gel” electrolyte for high rate capability lithium-ion batteries , 2011 .

[10]  Philip N. Ross,et al.  Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6 , 2006 .

[11]  D. Aurbach,et al.  A comparison among LiPF6, LiPF3(CF2CF3)3 (LiFAP), and LiN(SO2CF2CF3)2 (LiBETI) solutions: electrochemical and thermal studies , 2003 .

[12]  K. Chiba,et al.  Electrolyte Systems for High Withstand Voltage and Durability I. Linear Sulfones for Electric Double-Layer Capacitors , 2011 .

[13]  V. Koch,et al.  Electrochemical Stability of LiMF6 ( M = P , As , Sb ) in Tetrahydrofuran and Sulfolane , 1988 .

[14]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[15]  Jinhua Sun,et al.  Thermal Stabilities of Some Lithium Salts and Their Electrolyte Solutions With and Without Contact to a LiFePO4 Electrode , 2010 .

[16]  E. Bergmann,et al.  Organic fluorine compounds. Part XXXV. The reaction of ethylene carbonates with nucleophilic reagents , 1966 .

[17]  Kristina Edström,et al.  Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite , 2001 .

[18]  Wu Xu,et al.  Weakly Coordinating Anions, and the Exceptional Conductivity of Their Nonaqueous Solutions , 2001 .

[19]  W. Henderson,et al.  Characterization of Solvent-Free Polymer Electrolytes Consisting of Ternary PEO – LiTFSI – PYR14 TFSI , 2006 .

[20]  S. Passerini,et al.  Li-doped N-methoxyethyl-N-methylpyrrolidinium fluorosulfonyl-(trifluoromethanesulfonyl)imide as electrolyte for reliable lithium ion batteries , 2014 .

[21]  M. Armand,et al.  New type of imidazole based salts designed specifically for lithium ion batteries , 2010 .

[22]  Shalu,et al.  Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. , 2013, The journal of physical chemistry. B.

[23]  Maria Forsyth,et al.  Transport properties of ionic liquid electrolytes with organic diluents. , 2009, Physical chemistry chemical physics : PCCP.

[24]  M. Armand,et al.  Potentiometric measurements of ionic transport parameters in poly(ethylene oxide)-LiX electrolytes , 1987 .

[25]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[26]  Robert Kostecki,et al.  The mechanism of HF formation in LiPF6-based organic carbonate electrolytes , 2012 .

[27]  M. Armand,et al.  Lithium-ion batteries: Runaway risk of forming toxic compounds , 2003, Nature.

[28]  Heng Zhang,et al.  New hydrophobic ionic liquids based on (fluorosulfonyl)(polyfluorooxaalkanesulfonyl)imides with various oniums , 2013 .

[29]  Wenfang Feng,et al.  Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for l , 2011 .

[30]  T. Hanemann,et al.  Gel electrolytes based on ionic liquids for advanced lithium polymer batteries , 2013 .

[31]  K. Kanamura Anodic oxidation of nonaqueous electrolytes on cathode materials and current collectors for rechargeable lithium batteries , 1999 .

[32]  Zhuobin Li,et al.  Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries , 2014, Front. Energy Res..

[33]  S. Passerini,et al.  Perfluoroalkanesulfonylimides and their lithium salts: synthesis and characterisation of intermediates and target compounds , 2004 .

[34]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[35]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[36]  Jeff Dahn,et al.  High-Potential Redox Shuttle for Use in Lithium-Ion Batteries , 2009 .

[37]  M. Armand,et al.  Building better batteries , 2008, Nature.

[38]  S. Passerini,et al.  A novel ternary polymer electrolyte for LMP batteries based on thermal cross-linked poly(urethane acrylate) in presence of a lithium salt and an ionic liquid , 2008 .

[39]  P. Johansson,et al.  Anions for Lithium Battery Electrolytes: A Spectroscopic and Theoretical Study of the B ( CN ) 4 − Anion of the Ionic Liquid C2mim [ B ( CN ) 4 ] , 2008 .

[40]  K. Kubota,et al.  Thermal Properties of Alkali (Fluorosulfonyl)(trifluoromethylsulfonyl)amides , 2010 .

[41]  Haoshen Zhou,et al.  Liquid‐Crystalline Electrolytes for Lithium‐Ion Batteries: Ordered Assemblies of a Mesogen‐Containing Carbonate and a Lithium Salt , 2015 .

[42]  S. Moon,et al.  Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries , 2008 .

[43]  Janna K. Maranas,et al.  Segmental Dynamics and Ion Association in PEO-Based Single Ion Conductors , 2011 .

[44]  Yong Yang,et al.  Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes , 2008 .

[45]  J. Reiter,et al.  Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents , 2006 .

[46]  P. Bruce Structure and electrochemistry of polymer electrolytes , 1995 .

[47]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[48]  S. Passerini,et al.  Improved lithium-metal/vanadium pentoxide polymer battery incorporating crosslinked ternary polymer electrolyte with N-butyl-N-methylpyrrolidinium bis(perfluoromethanesulfonyl)imide , 2014 .

[49]  Yang Ren,et al.  New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries , 2013, Nature Communications.

[50]  M. Winter,et al.  Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid , 2008 .

[51]  James McBreen,et al.  Using a Boron-Based Anion Receptor Additive to Improve the Thermal Stability of LiPF6-Based Electrolyte for Lithium Batteries , 2002 .

[52]  B. Scrosati,et al.  Polymer Electrolytes: The Key to Lithium Polymer Batteries , 2000 .

[53]  J. Tarascon,et al.  Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process , 2000 .

[54]  W. Henderson,et al.  An Elegant Fix for Polymer Electrolytes , 2005 .

[55]  Stefania Ferrari,et al.  Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid , 2010 .

[56]  M. Armand,et al.  Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts , 1983 .

[57]  Shengbo Zhang,et al.  An unique lithium salt for the improved electrolyte of Li-ion battery , 2006 .

[58]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[59]  F. Alloin,et al.  Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries , 2015 .

[60]  P. Novák,et al.  Stable cycling of graphite in an ionic liquid based electrolyte. , 2004, Chemical communications.

[61]  Chusheng Chen,et al.  Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries , 2005 .

[62]  S. Hirano,et al.  New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether grou , 2011 .

[63]  Kathryn M. Butler,et al.  Flame retardant mechanism of silica gel/silica , 2000 .

[64]  M. Armand,et al.  Potentiometric measurements of ionic mobilities in poly(ethyleneoxide) electrolytes , 1986 .

[65]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[66]  A. Lewandowski,et al.  Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte , 2007 .

[67]  J. Yamaki,et al.  Charge–discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation , 2006 .

[68]  G. Feuillade,et al.  Ion-conductive macromolecular gels and membranes for solid lithium cells , 1975 .

[69]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[70]  H. Matsumoto,et al.  Low-melting, Low-viscous, Hydrophobic Ionic Liquids: N-Alkyl(alkyl ether)-N-methylpyrrolidinium Perfluoroethyltrifluoroborate , 2004 .

[71]  Hayamizu Kikuko,et al.  炭酸プロピレン中に溶解した二価リチウム塩Li 2 B 12 F 12 のNMR法による研究 , 2009 .

[72]  L. Xiao,et al.  Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries , 2004 .

[73]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[74]  Y. Abu-Lebdeh,et al.  High-Voltage Electrolytes Based on Adiponitrile for Li-Ion Batteries , 2009 .

[75]  J. Arai Nonflammable Methyl Nonafluorobutyl Ether for Electrolyte Used in Lithium Secondary Batteries , 2003 .

[76]  W. Henderson,et al.  Recent developments in the ENEA lithium metal battery project , 2005 .

[77]  Kristina Edström,et al.  Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery , 2003 .

[78]  A. Webber Conductivity and Viscosity of Solutions of LiCF3 SO 3, Li ( CF 3 SO 2 ) 2 N , and Their Mixtures , 1991 .

[79]  Hiroshi Inoue,et al.  Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries , 1997 .

[80]  John B. Kerr,et al.  The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge , 2003 .

[81]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[82]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[83]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[84]  Chun-hua Chen,et al.  Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes , 2007 .

[85]  Marca M. Doeff,et al.  Corrosion of Aluminum Current Collectors in Lithium-Ion Batteries with Electrolytes Containing LiPF6 , 2005 .

[86]  R. Kostecki,et al.  HF Formation in LiPF6-Based Organic Carbonate Electrolytes , 2013 .

[87]  L. Porcarelli,et al.  Use of non-conventional electrolyte salt and additives in high-voltage graphite/LiNi0.4Mn1.6O4 batteries , 2013 .

[88]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[89]  B. Pecquenard,et al.  Influence of sputtering conditions on ionic conductivity of LiPON thin films , 2006 .

[90]  G. G. Eshetu,et al.  Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF6 and LiFSI salts , 2014 .

[91]  Yanping Yin,et al.  Application of a nonflammable electrolyte containing Pp13TFSI ionic liquid for lithium-ion batteries using the high capacity cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 , 2013 .

[92]  R. Marcilla,et al.  Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes , 2009 .

[93]  M. Winter,et al.  High flash point electrolyte for use in lithium-ion batteries , 2011 .

[94]  Zheng-Wen Fu,et al.  A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition , 2002 .

[95]  J. Tarascon,et al.  New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells , 1994 .

[96]  J. Arai,et al.  Binary Mixed Solvent Electrolytes Containing Trifluoropropylene Carbonate for Lithium Secondary Batteries , 2002 .

[97]  Huakun Liu,et al.  Lithium-polymer battery based on an ionic liquid–polymer electrolyte composite for room temperature applications , 2008 .

[98]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[99]  W. Bennett,et al.  Composite electrolytes for lithium batteries : Ionic liquids in APTES cross-linked polymers , 2007 .

[100]  Martin Winter,et al.  Fluorinated organic solvents in electrolytes for lithium ion cells , 2001 .

[101]  Doron Aurbach,et al.  A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures , 1996 .

[102]  Daniel Lemordant,et al.  Comparative study of EC/DMC LiTFSI and LiPF 6 electrolytes for electrochemical storage , 2011 .

[103]  Hajime Matsumoto,et al.  Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells , 2007 .

[104]  Edward Plichta,et al.  Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries. , 2005, The journal of physical chemistry. B.

[105]  Dominique Guyomard,et al.  High voltage stable liquid electrolytes for Li1+xMn2O4/carbon rocking-chair lithium batteries , 1995 .

[106]  H. Sakaebe,et al.  Application of room temperature ionic liquids to Li batteries , 2007 .

[107]  H. Ohno,et al.  Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives , 2005 .

[108]  J. W. Hastie,et al.  Molecular Basis of Flame Inhibition. , 1973, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[109]  M. Armand,et al.  Ionic liquids based on (fluorosulfonyl)(pentafluoroethanesulfonyl)imide with various oniums , 2010 .

[110]  Vinay Gupta,et al.  Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries , 2002 .

[111]  J. Yamaki,et al.  Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells , 2002 .

[112]  Junwei Jiang,et al.  Thermal stability of 18650 size Li-ion cells containing LiBOB electrolyte salt , 2004 .

[113]  Kai Jiang,et al.  Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes , 2006 .

[114]  Hirokazu Aoyama,et al.  Thermal Stability and Electrochemical Properties of Fluorine Compounds as Nonflammable Solvents for Lithium-Ion Batteries , 2010 .

[115]  Zhibin Zhou,et al.  Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells , 2011 .

[116]  Petr Novák,et al.  Stabilisation of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study , 2005 .

[117]  Der-Tau Chin,et al.  Electrochemical Overcharge Protection of Rechargeable Lithium Batteries I . Kinetics of Iodide/Tri‐Iodide/Iodine Redox Reactions on Platinum in Solutions , 1988 .

[118]  M. Armand,et al.  Aluminium corrosion in room temperature molten salt , 2004 .

[119]  C. Angell,et al.  Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity , 1993, Nature.

[120]  Masayoshi Watanabe,et al.  Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts , 2000 .

[121]  Y. Nishi Lithium ion secondary batteries; past 10 years and the future , 2001 .

[122]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[123]  Doron Aurbach,et al.  LiPF3 ( CF 2 CF 3 ) 3 : A Salt for Rechargeable Lithium Ion Batteries , 2003 .

[124]  M. Winter,et al.  Fluorosulfonyl-(trifluoromethanesulfonyl)imide ionic liquids with enhanced asymmetry. , 2013, Physical chemistry chemical physics : PCCP.

[125]  H. Weingärtner Zum Verständnis ionischer Flüssigkeiten auf molekularer Ebene: Fakten, Probleme und Kontroversen , 2008 .

[126]  M. Ishikawa,et al.  Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries , 2002 .

[127]  Stefano Passerini,et al.  Room temperature lithium polymer batteries based on ionic liquids , 2010 .

[128]  B. Scrosati,et al.  Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries. , 2011, ChemSusChem.

[129]  M. Winter,et al.  Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries , 2013 .

[130]  G. H. Newman,et al.  Hazard Investigations of LiClO4 / Dioxolane Electrolyte , 1980 .

[131]  N. Salem,et al.  Electrolyte Formulations Based on Dinitrile Solvents for High Voltage Li-Ion Batteries , 2013 .

[132]  Bruno Scrosati,et al.  Polymer electrolytes: Present, past and future , 2011 .

[133]  R. Kühnel,et al.  Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries , 2011 .

[134]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[135]  S. Wang,et al.  炭酸エチレン/炭酸ジメチル溶液中でのPF 5 及びLiPF 6 の化学反応性 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2001 .

[136]  Ashok K. Vijh,et al.  Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance , 2010 .

[137]  J. Locquet,et al.  Hybrid Polymer Electrolytes Based on a Poly(vinyl alcohol)/Poly(acrylic acid) Blend and a Pyrrolidinium‐Based Ionic Liquid for Lithium‐Ion Batteries , 2015 .

[138]  E. Lawless,et al.  Lithium hexafluoroarsenate and hexafluoroarsenic acid , 1971 .

[139]  M. Döbbelin,et al.  Synthesis of Pyrrolidinium-Based Poly(ionic liquid) Electrolytes with Poly(ethylene glycol) Side Chains , 2012 .

[140]  M. Ue,et al.  Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate‐Ethyl Methyl Carbonate Mixed Solvent , 1995 .

[141]  Thomas E. Sutto,et al.  Hydrophobic and Hydrophilic Interactions of Ionic Liquids and Polymers in Solid Polymer Gel Electrolytes , 2007 .

[142]  Peter V. Wright,et al.  Polymer electrolytes—the early days , 1998 .

[143]  Yong Yang,et al.  Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries , 2009 .

[144]  Andrzej Lewandowski,et al.  Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies , 2009 .

[145]  Jou-Hyeon Ahn,et al.  Ionic liquid-based gel polymer electrolyte for LiMn0.4Fe0.6PO4 cathode prepared by electrospinning technique , 2010 .

[146]  Hui Ye,et al.  Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends. , 2007, Journal of the Electrochemical Society.

[147]  Jong-Ho Cha,et al.  Characterization of PVdF(HFP) gel electrolytes based on 1-(2-Hydroxyethyl)-3-methyl imidazolium ionic liquids. , 2005, The journal of physical chemistry. B.

[148]  D. Wilkinson,et al.  Conductivity of electrolytes for rechargeable lithium batteries , 1991 .

[149]  Kang Xu,et al.  LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation , 2002 .

[150]  Kang Xu,et al.  Study of LiBF4 as an electrolyte salt for a Li-ion battery , 2002 .

[151]  Wenquan Lu,et al.  Electrochemical and Thermal Studies of LiNi0.8Co0.15Al0.015O2 under Fluorinated Electrolytes , 2014 .

[152]  Martin Winter,et al.  UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids , 2010 .

[153]  J. Dahn,et al.  Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries , 2005 .

[154]  Lu Zhang,et al.  Novel redox shuttle additive for high-voltage cathode materials , 2011 .

[155]  Moon Jeong Park,et al.  Enhanced Performance in Lithium–Polymer Batteries Using Surface-Functionalized Si Nanoparticle Anodes and Self-Assembled Block Copolymer Electrolytes , 2011 .

[156]  W. Jaegermann,et al.  Investigation of the solid-state electrolyte/cathode LiPON/LiCoO2 interface by photoelectron spectroscopy , 2010 .

[157]  H. Matsumoto,et al.  Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions. , 2002, Chemical communications.

[158]  M. Ishikawa,et al.  Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries , 2006 .

[159]  M. Anouti,et al.  Viscosity and carbon dioxide solubility for LiPF6, LiTFSI, and LiFAP in alkyl carbonates: lithium salt nature and concentration effect. , 2014, The journal of physical chemistry. B.

[160]  D. Aurbach,et al.  Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems , 1997 .

[161]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[162]  Janna K. Maranas,et al.  Cation Coordination and Motion in a Poly(ethylene oxide)-Based Single Ion Conductor , 2012 .

[163]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .

[164]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[165]  Yongyao Xia,et al.  A 4 V Lithium-Ion Battery Based on a 5 V LiNi x Mn2 − x O 4 Cathode and a Flake Cu-Sn Microcomposite Anode , 2001 .

[166]  J. Barthel,et al.  A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes II. Conductivity of Lithium Organoborates in Dimethoxyethane and Propylene Carbonate , 1996 .

[167]  M. Lekgoathi,et al.  Decomposition kinetics of anhydrous and moisture exposed LiPF6 salts by thermogravimetry , 2013 .

[168]  K. Möller,et al.  Isocyanate compounds as electrolyte additives for lithium-ion batteries , 2007 .

[169]  Heng Zhang,et al.  Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery , 2015 .

[170]  W. Henderson,et al.  Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 °C , 2006 .

[171]  K. Amine,et al.  Tris(pentafluorophenyl) Borane as an Additive to Improve the Power Capabilities of Lithium-Ion Batteries , 2006 .

[172]  Kang Xu,et al.  Sulfone-based electrolytes for lithium-ion batteries , 2002 .

[173]  M. Taggougui,et al.  2,5-Difluoro-1,4-dimethoxybenzene for overcharge protection of secondary lithium batteries , 2007 .

[174]  S. Passerini,et al.  Investigation of the electrochemical properties of polymer-LiX-ionic liquid ternary systems , 2007 .

[175]  J. Foropoulos,et al.  Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl) imide, (CF3SO2)2NH , 1984 .

[176]  J. Dahn,et al.  Phenothiazine Molecules Possible Redox Shuttle Additives for Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries , 2006 .

[177]  Hanxi Yang,et al.  Possible use of methylbenzenes as electrolyte additives for improving the overcharge tolerances of Li-ion batteries , 2004 .

[178]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[179]  S. Passerini,et al.  Chemical-physical properties of bis(perfluoroalkylsulfonyl)imide-based ionic liquids , 2011 .

[180]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[181]  Jean-Marie Tarascon,et al.  Performance of Bellcore's plastic rechargeable Li-ion batteries , 1996 .

[182]  V. Koch Reactions of Tetrahydrofuran and Lithium Hexafluoroarsenate with Lithium , 1979 .

[183]  M. Winter,et al.  LiTFSI Stability in Water and Its Possible Use in Aqueous Lithium-Ion Batteries: pH Dependency, Electrochemical Window and Temperature Stability , 2013 .

[184]  Y. Nishi The development of lithium ion secondary batteries. , 2001 .

[185]  David O'Hagan,et al.  Understanding organofluorine chemistry. An introduction to the C-F bond. , 2008, Chemical Society reviews.

[186]  M. Navarra Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries , 2013 .

[187]  S. Moon,et al.  Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive , 2007 .

[188]  J. Arai,et al.  A Divalent Lithium Salt Li2B12F12 Dissolved in Propylene Carbonate Studied by NMR Methods , 2009 .

[189]  F. Alloin,et al.  Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. , 2014, ChemSusChem.

[190]  B. Scrosati,et al.  Composite poly(ethylene oxide) electrolytes plasticized by N-alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide for lithium batteries. , 2013, ChemSusChem.

[191]  R. Agrawal,et al.  Superionic solid: composite electrolyte phase – an overview , 1999 .

[192]  J. Dahn,et al.  Direct comparison of 2,5-di-tert-butyl-1,4-dimethoybenzene and 4-tert-butyl-1,2-dimethoxybenzene as redox shuttles in LiFePO4-based Li-ion cells , 2007 .

[193]  M. Winter,et al.  Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature , 2009 .

[194]  U. Heider,et al.  Challenge in manufacturing electrolyte solutions for lithium and lithium ion batteries quality control and minimizing contamination level , 1999 .

[195]  R. Marcilla,et al.  Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries , 2010 .

[196]  M. Winter,et al.  Mixtures of ionic liquids for low temperature electrolytes , 2012 .

[197]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[198]  W. Henderson,et al.  Physical and electrochemical properties of binary ionic liquid mixtures: (1-x) PYR14TFSI-(x) PYR14IM14 , 2012 .

[199]  T. P. Kumar,et al.  Safety mechanisms in lithium-ion batteries , 2006 .

[200]  J. Barthel,et al.  A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes III. Synthesis and Properties of Some Lithium Organoborates , 1996 .

[201]  Andrea G. Bishop,et al.  The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes , 2002 .

[202]  J. Barthel,et al.  A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes IV. Investigations of the Electrochemical Oxidation of Lithium Organoborates , 1997 .

[203]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[204]  Joon-Ho Shin,et al.  PEO-Based Polymer Electrolytes with Ionic Liquids and Their Use in Lithium Metal-Polymer Electrolyte Batteries , 2005 .

[205]  James W. Evans,et al.  Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance , 2000 .

[206]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[207]  R. Torresi,et al.  Ether-bond-containing ionic liquids and the relevance of the ether bond position to transport properties. , 2010, The journal of physical chemistry. B.

[208]  Bing Li,et al.  Effect of Fluoroethylene Carbonate Additive on Low Temperature Performance of Li-Ion Batteries , 2012 .

[209]  Brett L. Lucht,et al.  Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries , 2005 .

[210]  Stefano Passerini,et al.  Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolytes , 2009 .

[211]  G. G. Eshetu,et al.  LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives , 2013 .

[212]  H. Sakaebe,et al.  Low Melting and Electrochemically Stable Ionic Liquids Based on Asymmetric Fluorosulfonyl(trifluoromethylsulfonyl)amide , 2008 .

[213]  Christopher J. Orendorff,et al.  The Role of Separators in Lithium-Ion Cell Safety , 2012 .

[214]  L. Krause,et al.  Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells , 1997 .

[215]  J. Newman,et al.  The Effect of Interfacial Deformation on Electrodeposition Kinetics , 2004 .

[216]  M. Armand,et al.  Efficient Preparation of (Fluorosulfonyl)(pentafluoroethanesulfonyl)imide and Its Alkali Salts , 2010 .

[217]  Jou‐Hyeon Ahn,et al.  Highly porous LiMnPO4 in combination with an ionic liquid-based polymer gel electrolyte for lithium batteries , 2011 .

[218]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[219]  Zhian Zhang,et al.  LiPF6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO4/artificial graphite lithium-ion cells , 2010 .

[220]  Kang Xu,et al.  Evaluation of Fluorinated Alkyl Phosphates as Flame Retardants in Electrolytes for Li-Ion Batteries: I. Physical and Electrochemical Properties , 2003 .

[221]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[222]  Kang Xu,et al.  An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes , 2002 .

[223]  Joon-Ho Shin,et al.  Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes , 2003 .

[224]  S. Wada,et al.  Electrochemical properties and lithium ion solvation behavior of sulfone–ester mixed electrolytes for high-voltage rechargeable lithium cells , 2008 .

[225]  S. Passerini,et al.  Lithium Polymer Batteries Based on Ionic Liquids , 2013 .

[226]  Guanjie Li,et al.  Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery , 2008 .

[227]  Kang Xu,et al.  Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate , 2002 .

[228]  Li Yang,et al.  Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis , 2006 .

[229]  M. Winter,et al.  Investigations on the electrochemical performance and thermal stability of two new lithium electrolyte salts in comparison to LiPF6 , 2013 .

[230]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties , 2001 .

[231]  B. Scrosati,et al.  Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid , 2015, Ionics.

[232]  K. Amine,et al.  Flame-retardant additives for lithium-ion batteries , 2003 .

[233]  Kang Xu,et al.  A new approach toward improved low temperature performance of Li-ion battery , 2002 .

[234]  Kang Xu,et al.  Evaluation of Fluorinated Alkyl Phosphates as Flame Retardants in Electrolytes for Li-Ion Batteries: II. Performance in Cell , 2003 .

[235]  K. Amine,et al.  Bifunctional electrolyte additive for lithium-ion batteries. , 2007 .

[236]  Koki Shimada,et al.  Surface-layer formation by reductive decomposition of LiPF6 at relatively high potentials on negative electrodes in lithium ion batteries and its suppression , 2014 .

[237]  D. Macfarlane,et al.  Room-temperature molten salts based on the quaternary ammonium ion , 1998 .

[238]  M. Winter,et al.  Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate , 2013 .

[239]  Hyunjoon Lee,et al.  Ionic liquids containing an ester group as potential electrolytes , 2006 .

[240]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.

[241]  B. Scrosati,et al.  New, ionic liquid-based membranes for lithium battery application , 2009 .

[242]  Yang-Kook Sun,et al.  Electrochemical behavior and passivation of current collectors in lithium-ion batteries , 2011 .

[243]  D. Dixon,et al.  On a Quantitative Scale for Lewis Acidity and Recent Progress in Polynitrogen Chemistry , 2000 .

[244]  W. Henderson,et al.  Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide and its mixture with LiN(SO2CF3)2. , 2005, The journal of physical chemistry. A.

[245]  H. Weingärtner,et al.  Understanding ionic liquids at the molecular level: facts, problems, and controversies. , 2008, Angewandte Chemie.

[246]  J. Whitacre,et al.  Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films , 2004 .

[247]  Stefano Passerini,et al.  NMR investigation of ionic liquid-LiX mixtures: pyrrolidinium cations and TFSI- anions. , 2005, The journal of physical chemistry. B.

[248]  J. Dahn,et al.  Effects of solvents and salts on the thermal stability of LiC6 , 2004 .

[249]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[250]  Yong Yang,et al.  Recent progress in research on high-voltage electrolytes for lithium-ion batteries. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[251]  T. R. Jow,et al.  Aluminum corrosion in electrolyte of Li-ion battery , 2002 .

[252]  R. Mcmillan,et al.  Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes , 1999 .

[253]  Karim Zaghib,et al.  Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials , 2007 .

[254]  J. Fergus,et al.  The formation and stability of the solid electrolyte interface on the graphite anode , 2014 .

[255]  H. Ohno,et al.  Induction of thermotropic bicontinuous cubic phases in liquid-crystalline ammonium and phosphonium salts. , 2012, Journal of the American Chemical Society.

[256]  H. Ohno,et al.  Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes , 2006 .

[257]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[258]  Qingsong Wang,et al.  4-Isopropyl Phenyl Diphenyl Phosphate as Flame-Retardant Additive for Lithium-Ion Battery Electrolyte , 2005 .

[259]  J. Kerr,et al.  Chemical reactivity of PF{sub 5} and LiPF{sub 6} in ethylene carbonate/dimethyl carbonate solutions , 2001 .

[260]  Hui Yang,et al.  Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for Lithium ion batteries , 2014 .

[261]  T. P. Chen,et al.  Suppression of nitridation-induced interface traps and hole mobility degradation by nitrogen plasma nitridation , 2002 .

[262]  H. Ota,et al.  Effect of cyclic phosphate additive in non-flammable electrolyte , 2003 .

[263]  C. Masquelier Solid electrolytes: Lithium ions on the fast track. , 2011, Nature materials.

[264]  Michael Schmidt,et al.  Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries , 2001 .

[265]  H. Matsumoto,et al.  Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. , 2006, Chemistry.

[266]  W. Behl,et al.  Anodic Oxidation of Lithium Bromide in Tetrahydrofuran Solutions , 1989 .

[267]  O. Efimov,et al.  Polymer gel electrolytes for lithium batteries , 2012 .

[268]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: II. The Use of an Amorphous Carbon Anode , 2001 .

[269]  Ji‐Guang Zhang,et al.  Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5 V Li-ion battery applications , 2012 .

[270]  S. Jung,et al.  Computational screening of solid electrolyte interphase forming additives in lithium-ion batteries , 2014 .

[271]  Bruno Scrosati,et al.  Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices , 2006 .

[272]  Z. H. Li,et al.  Effect of zwitterionic salt on the electrochemical properties of a solid polymer electrolyte with high temperature stability for lithium ion batteries , 2010 .

[273]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[274]  Guy Marlair,et al.  In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[275]  Abu-Lebdeh Yaser,et al.  Liイオンバッテリー用のアジポニトリル系高電圧電解質 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2009 .

[276]  Ji‐Guang Zhang,et al.  Interface modifications by anion receptors for high energy lithium ion batteries , 2014 .

[277]  B. Scrosati,et al.  The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte , 2004 .

[278]  Doron Aurbach,et al.  Revisiting LiClO4 as an Electrolyte for Rechargeable Lithium-Ion Batteries , 2010 .

[279]  Claudio Gerbaldi,et al.  UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries , 2010 .

[280]  Andrew N. Jansen,et al.  Lithium Borate Cluster Salts as Redox Shuttles for Overcharge Protection of Lithium-Ion Cells , 2010 .

[281]  J. Yamaki,et al.  Reaction mechanisms of aromatic compounds as an overcharge protection agent for 4 V class lithium-ion cells , 2006 .

[282]  C. Angell,et al.  The preparation, conductivity, viscosity and mechanical properties of polymer electrolytes and new hybrid ionic rubber electrolytes , 1995 .

[283]  C. Wan,et al.  The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries , 2005 .

[284]  Anthony F. Hollenkamp,et al.  High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid , 2004 .

[285]  M. Winter,et al.  Thermal and electrochemical properties of PEO-LiTFSI-Pyr 14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials , 2014 .